【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線與有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ) .
【解析】試題分析:(Ⅰ)先對函數(shù)求導(dǎo)得,然后求出導(dǎo)函數(shù)的零點(diǎn),討論零點(diǎn)所分區(qū)間上導(dǎo)函數(shù)的正負(fù),以此來判斷函數(shù)的單調(diào)性,導(dǎo)數(shù)為正的區(qū)間是對應(yīng)函數(shù)的遞增區(qū)間,導(dǎo)數(shù)為負(fù)的區(qū)間是對應(yīng)函數(shù)的遞減區(qū)間;(Ⅱ)先化簡得到,然后構(gòu)造函數(shù),將問題轉(zhuǎn)化為“函數(shù)與有三個(gè)公共點(diǎn)”.由數(shù)形結(jié)合的思想可知,當(dāng)在函數(shù)的兩個(gè)極值點(diǎn)對應(yīng)的函數(shù)值之間時(shí),函數(shù)與有三個(gè)公共點(diǎn),那么只要利用函數(shù)的導(dǎo)數(shù)找到此函數(shù)的兩個(gè)極值即可.
試題解析:(Ⅰ) 2分
令,解得或. 4分
當(dāng)時(shí), ;當(dāng)時(shí),
∴的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為6分
(Ⅱ)令,即
∴
設(shè),即考察函數(shù)與何時(shí)有三個(gè)公共點(diǎn) 8分
令,解得或.
當(dāng)時(shí),
當(dāng)時(shí),
∴在單調(diào)遞增,在單調(diào)遞減 9分
10分
根據(jù)圖象可得. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點(diǎn).
(1)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(2)若弦長,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長為的線段的兩個(gè)端點(diǎn)和分別在軸和軸上滑動(dòng).
(1)求線段的中點(diǎn)的軌跡的方程;
(2)當(dāng)時(shí),曲線與軸交于兩點(diǎn),點(diǎn)在線段上,過作軸的垂線交曲線于不同的兩點(diǎn),點(diǎn)在線段上,滿足與的斜率之積為-2,試求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,其中.
(1)求證:直線恒過定點(diǎn);
(2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值;
(3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究”中學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響”.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
參考數(shù)據(jù):
參考公式: ,其中
(Ⅰ)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用智能手機(jī)對學(xué)習(xí)有影響?
(Ⅱ)研究小組將該樣本中使用智能手機(jī)且成績優(yōu)秀的4位同學(xué)記為組,不使用智能手機(jī)且成績優(yōu)秀的8位同學(xué)記為組,計(jì)劃從組推選的2人和組推選的3人中,隨機(jī)挑選兩人在學(xué)校升旗儀式上作“國旗下講話”分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人恰好分別來自、兩組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對高二年段的男生進(jìn)行體檢,現(xiàn)將高二男生的體重數(shù)據(jù)進(jìn)行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組的人數(shù)為200.根據(jù)一般標(biāo)準(zhǔn),高二男生體重超過屬于偏胖,低于屬于偏瘦.觀察圖形的信息,回答下列問題:
(1)求體重在內(nèi)的頻率,并補(bǔ)全頻率分布直方圖;
(2)用分層抽樣的方法從偏胖的學(xué)生中抽取人對日常生活習(xí)慣及體育鍛煉進(jìn)行調(diào)查,則各組應(yīng)分別抽取多少人?
(3)根據(jù)頻率分布直方圖,估計(jì)高二男生的體重的中位數(shù)與平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,離心率為,兩焦點(diǎn)分別為,過的直線交橢圓于兩點(diǎn),且的周長為8.
(1)求橢圓的方程;
(2)過點(diǎn)作圓的切線交橢圓于兩點(diǎn),求弦長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程.
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com