【題目】解關(guān)于x的不等式12x2﹣ax>a2(a∈R).

【答案】解:由12x2﹣ax﹣a2>0(4x+a)(3x﹣a)>0(x+ )(x﹣ )>0, ①a>0時(shí),﹣ ,解集為{x|x<﹣ 或x> };
②a=0時(shí),x2>0,解集為{x|x∈R且x≠0};
③a<0時(shí),﹣ ,解集為{x|x< 或x>﹣ }.
綜上,當(dāng)a>0時(shí),﹣ ,解集為{x|x<﹣ 或x> };
當(dāng)a=0時(shí),x2>0,解集為{x|x∈R且x≠0};
當(dāng)a<0時(shí),﹣ ,解集為{x|x< 或x>﹣ }
【解析】把原不等式的右邊移項(xiàng)到左邊,因式分解后,分a大于0,a=0和a小于0三種情況分別利用取解集的方法得到不等式的解集即可.
【考點(diǎn)精析】利用解一元二次不等式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓心角為直角的扇形花草房,半徑為1,點(diǎn)是花草房弧上一個(gè)動(dòng)點(diǎn),不含端點(diǎn),現(xiàn)打算在扇形內(nèi)種花, ,垂足為 將扇形分成左右兩部分,在左側(cè)部分三角形為觀賞區(qū),在右側(cè)部分種草,已知種花的單位面積的造價(jià)為,種草的單位面積的造價(jià)為2,其中為正常數(shù),設(shè),種花的造價(jià)與種草的造價(jià)的和稱為總造價(jià),不計(jì)觀賞區(qū)的造價(jià),總造價(jià)為

關(guān)于的函數(shù)關(guān)系式;

求當(dāng)為何值時(shí),總造價(jià)最小,并求出最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設(shè),記數(shù)列的前項(xiàng)和為

①求;

②求正整數(shù) k,使得對(duì)任意均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,離心率
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過(guò)左焦點(diǎn)F1且傾斜角為 的直線l與橢圓交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(1,2), =(﹣3,2),當(dāng)k為何值時(shí):
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)△ABC所在平面α外一點(diǎn)P,作PO⊥α,垂足為O,連接PA,PB,PC,若點(diǎn)O是△ABC的內(nèi)心,則( )

A.PA=PB=PC
B.點(diǎn)P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 ,下面說(shuō)法錯(cuò)誤的是(
A.若 共線,則 =0
B. =
C.對(duì)任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A=30°,BC=2 ,D是AB邊上的一點(diǎn),CD=2,△BCD的面積為4,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案