不等式
2x-5
1-x
<1
的解集為
 
考點(diǎn):其他不等式的解法
專題:計算題,不等式的解法及應(yīng)用
分析:先把分式不等式,通過移項整理后,轉(zhuǎn)化為整式不等式求解即可.
解答: 解:不等式
2x-5
1-x
<1
化為不等式
2x-5
1-x
-1<0
,
3(x-2)
x-1
>0
,?(x-2)(x-1)>0.
解得x<1或x>2.
∴不等式的解集為:{x|x<1或x>2}.
故答案為:{x|x<1或x>2}.
點(diǎn)評:本題主要考查分式不等式的解法,體現(xiàn)了化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≤0
y≤0
x+y+1≥0
,則目標(biāo)函數(shù)z=x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)對任意x∈R均滿足f(2+x)=f(2-x),且當(dāng)-2≤x≤0時,f(x)=log3(1-x),則f(2014)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,滿足條件
y≤9-x2
y≥x+7
的區(qū)域的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
2x-y+2≥0
x-2y-2≤0
x+y≤2
,
(Ⅰ)畫出不等式組表示的平面區(qū)域;     
(Ⅱ)求z=x-y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=xcosx在x=
π
3
處的切線的斜率是( 。
A、-
3
2
B、-
1
2
C、
1
2
-
3
6
π
D、
1
2
+
3
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+2.
(Ⅰ)若函數(shù)f(x)在區(qū)間[3,4]上單調(diào)且有最大值為2,求實數(shù)a值;
(Ⅱ)若函數(shù)f(x)的圖象與連接兩點(diǎn)M(0,1),N(2,3)的線段(包括M,N兩點(diǎn))有兩個相異的交點(diǎn),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列9,99,999,…的前n項的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三條:
①對任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為“美好函數(shù)”,給出下列結(jié)論:
(1)若函數(shù)f(x)為美好函數(shù),則f(0)=0;
(2)函數(shù)g(x)=2x-1(x∈[0,1])不是美好函數(shù);
(3)函數(shù)h(x)=xa(a∈(0,1),x∈[0,1]是美好函數(shù);
(4)若函數(shù)f(x)為美好函數(shù),且?x0∈[0,1],使得f(f(x0))=x0,則f(x0)=x0
以上說法中正確的是
 
(寫出所有正確的結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案