同學(xué)們都有這樣的階梯經(jīng)驗(yàn),在某些數(shù)列的求和中,可把其中一項(xiàng)分裂成兩項(xiàng)之差,使得某些項(xiàng)可以相互抵消,從而實(shí)現(xiàn)化簡(jiǎn)求和,已知數(shù)列{an}的通項(xiàng)為an=
1
n(n+1)
,則將其通項(xiàng)分裂為an=
1
n
-
1
n+1
,故數(shù)列{an}的前n項(xiàng)和Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
.“斐波那契數(shù)列“是數(shù)學(xué)是上一個(gè)著名的數(shù)列,在斐波那契數(shù)列{an}中,a1=1,a2=1,an+an+1=an+2(n∈N*),若a2013=a,那么數(shù)列{an}的前2011項(xiàng)的和是
 
考點(diǎn):數(shù)列的求和
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)累加法,即可求出答案
解答: 解:∵a1=1,a2=1,an+an+1=an+2(n∈N*),
∴a1+a2=a3,
a2+a3=a4,
a3+a4=a5,

a2011+a2012=a2013
以上累加得,
a1+a2+a2+a3+a3+a4+…+a2011+a2012=a3+a4+…+a2013,
∴a1+a2+a3+a4+…+a2011=a2013-a2=a-1,
故答案為:a-1
點(diǎn)評(píng):本題主要考查了數(shù)列的求和方法,采用累加法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
7
(3x-2)
的定義域是( 。
A、[1,+∞)
B、(
2
3
,+∞)
C、(
2
3
,1]
D、[
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)菱形邊長(zhǎng)與其內(nèi)切圓的直徑之比為k:1(k>1),則這個(gè)菱形的一個(gè)小于
π
2
的內(nèi)角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)結(jié)論中:
(1)如果兩個(gè)函數(shù)都是增函數(shù),那么這兩個(gè)函數(shù)的積運(yùn)算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個(gè);
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域?yàn)閇a,b].
其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3z1+(z2+1)i=2z2-(z1-2)i.
(1)若z1,z2在付平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求z1,z2的值;
(2)若z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,求z1,z2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)的奇偶性:f(x)=
1
2
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P為線段A1B1上的動(dòng)點(diǎn),
(Ⅰ)判斷異面直線PN和AM所成的角的大小是否變化,并證明你的結(jié)論;
(Ⅱ)當(dāng)直線PN和平面ABC所成角最大時(shí),試確定點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較大小(填>或<)
(1)log2e
 
0
(2)sin
11π
6
 
0
(3)sin60°
 
sin750°
(4)cos
π
4
 
cos
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為5,過點(diǎn)(1,2)且與x軸相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案