已知不等式組
x-y+1≥0
x+y-1≥0
3x-y-3≤0
表示的平面區(qū)域為D,若直線l:kx-y+1與區(qū)域D重合的線段長度為2
2
,則實數(shù)k的值為( 。
A、1B、3C、-1D、-3
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用直線l過定點,計算出相應的線段長度即可得到結論.
解答: 解:作出不等式組的對應的平面區(qū)域如圖(陰影部分ABC),
直線kx-y+1=0恒過定點A(0,1),
x-y+1=0
3x-y-3=0
,解得
x=2
y=3
,即C(2,3),B(1,0),
則|AC|=
(2-0)2+(3-1)2
=
8
=2
2
,|AB|=
2
,
所以若直線l:kx-y+1與區(qū)域D重合的線段長度為2
2
,
則直線l和直線AC:x-y+1=0重合,
即k=1,
故選:A.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若三個互不相等的正數(shù)x1,x2,x3滿足方程xi+lnxi=mi(i=1,2,3),且m1+m3=2m2,則下列關系式正確的是( 。
A、x1x3<x22
B、x1x3≤x22
C、x1x3>x22
D、x1x3≥x22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x≥0
y≥x
4x+3y≤12
,則
x+2y+3
x+1
的取值范圍是(  )
A、[3,11]
B、[3,10]
C、[2,6]
D、[1,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點作傾斜角為30°的直線l與拋物線交于P、Q兩點,分別過P、Q兩點作PP1,QQ1垂直于拋物線的準線于P1、Q1,若|PQ|=2,則四邊形PP1Q1Q的面積是( 。
A、
3
B、2
C、3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i是虛數(shù)單位,復數(shù)z1=2-i,z2=1+3i,則z1•z2=(  )
A、-1-5iB、-1+5i
C、5-5iD、5+5i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知邊長為1的正三角形ABC,D是BC的中點,E是AC上一點且AE=2EC.則
AD
BE
=(  )
A、
1
4
B、-
1
4
C、0
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足:(3-i)z=3+i(i為虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應的點所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(2,-1)共線.
(1)求橢圓的離心率;
(2)設M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R),證明λ22-
2
3
λμ為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

網(wǎng)絡公司為了解某地區(qū)人群上網(wǎng)情況,隨機抽取了100名網(wǎng)民進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結果繪制的日均上網(wǎng)時間的頻率分布圖(時間單位為:時):
分組 [0,1) [1,2) [2,3) [3,4) [4,5) [5,6)
頻率  0.1 0.18  0.22   0.25 0.2   0.05
將日均上網(wǎng)時間不低于4小時的網(wǎng)民成為“網(wǎng)迷”,已知“網(wǎng)迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷是否有95%的把握認為“網(wǎng)迷”與性別有關?
  非網(wǎng)迷 網(wǎng)迷 合計
     
     
合計      
(Ⅱ)將日均上網(wǎng)時間不低于5小時的網(wǎng)民成為“超級網(wǎng)迷”,已知超級網(wǎng)迷中有2名女性,若從“超級網(wǎng)迷”中任意選取2人,求至少有1名女性網(wǎng)民的概率.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0)  0.100 0.050  0.010   0.001
 k0  2.706 3.841  6.635  10.828 

查看答案和解析>>

同步練習冊答案