已知雙曲線的離心率,過的直線到原點的距離是(1)求雙曲線的方程;

 (2)已知直線交雙曲線于不同的點C,D且C,D都在以B為圓心的圓上,求k的值.

(1)雙曲線方程為 (2)k=±.


解析:

(1)原點到直線AB的距離.

     故所求雙曲線方程為

(2)把中消去y,整理得 .

     設的中點是,則

    

   

故所求k=±.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為(  )
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1
有相同的焦點,
(1)求橢圓的離心率;   
(2)求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標準方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步練習冊答案