【題目】正方體ABCD﹣A1B1C1D1中,M、N分別是CD、CC1的中點,則直線A1M與DN所成角的大小是( )
A.
B.
C.
D.
【答案】D
【解析】解:以D為坐標原點,建立如圖所示的空間直角坐標系;
設棱長為2,
則D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),
=(0,2,1), =(﹣2,1,﹣2);
所以 =0×(﹣2)+2×1+1×(﹣2)=0,
所以 ⊥ ,
即A1M⊥DN,異面直線A1M與DN所成的角的大小是 .
故選:D.
【考點精析】認真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點M,N分別為線段A1B,AC1的中點.
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是邊長為a的正方形,PB⊥平面ABCD,M、N分別是AB、PC的中點.
(1)求證:MN∥平面PAB;
(2)若平面PDA與平面ABCD成60°的二面角,求該四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系xOy中,△AOB和△COD為兩等腰直角三角形,A(﹣2,0),C(a,0),(a>0),設△AOB和△COD的
外接圓圓心分別為點M、N.
(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥底面ABCD,則下列結論中不正確的是( )
A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓,如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.
(1)求的最小值;
(2)若,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)求曲線與軸,直線及軸圍成圖形的面積;
(2)若函數(shù)在上的極小值不大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關.現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
附表:
P(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
K2= ,(其中n=a+b+c+d)
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關”?
生產(chǎn)能手 | 非生產(chǎn)能手 | 合計 | |
25周歲以上組 | |||
25周歲以下組 | |||
合計 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com