已知△ABC滿足c=2acosB,則△ABC的形狀是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
【答案】分析:由余弦定理可把角的余弦化為邊,經(jīng)運算易得結(jié)果.
解答:解:由余弦定理可得cosB=,
故c=2acosB=2a×=
即c2=a2+c2-b2,故a2=b2,a=b
故△ABC為等腰三角形
故選A
點評:本題為三角形形狀的判斷,由正余弦定理進行邊角互化是解決此類問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC滿足
AB
2
=2
BA
CA
,則△ABC的形狀為(  )
A、直角三角形
B、等邊三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC滿足c=2acosB,則△ABC的形狀是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知△ABC滿足c=2acosB,則△ABC的形狀是


  1. A.
    等腰三角形
  2. B.
    直角三角形
  3. C.
    等腰直角三角形
  4. D.
    等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建師大附中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知△ABC滿足c=2acosB,則△ABC的形狀是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊答案