考點:數(shù)列遞推式
專題:證明題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)結(jié)合已知a
n+1=
,把不等式的左邊變形,化為含有a
n+1和a
n的代數(shù)式,然后利用絕對值的不等式放大,最后利用作差法證明不等式;
(Ⅱ)利用(Ⅰ)中的結(jié)論直接循環(huán)放大得答案;
(Ⅲ)由n,m,k∈N
*且n>m>k得到m-1≥k,然后把不等式左邊變形,得到|a
m-a
n|=|(a
m-a
m+1)+(a
m+1-a
m+2)+…+(a
n-1-a
n)|,再利用絕對值的不等式放大,結(jié)合(Ⅱ)的結(jié)論得答案.
解答:
證明:(Ⅰ):∵a
n+1=
,
∴|a
n+2-a
n+1|=
|an+1+an| |
(an+12+2)(an2+2) |
|an+1-an|≤|an+1|+|an| |
(an+12+2)(an2+2) |
|an+1-an|,
而
-|an+1|+|an| |
(an+12+2)(an2+2) |
=(an+12+2)(an2+2)-4|an+1|-4|an| |
4(an+12+2)(an2+2) |
=
an+12an2+2(|an+1|-1)2+2(|an|-1)2 |
4(an+12+2)(an2+2) |
>0,
即:|a
n+2-a
n+1|<
|a
n+1-a
n|(n∈N
*);
(Ⅱ)∵|a
n+2-a
n+1|<
|a
n+1-a
n|(n∈N
*),
∴
|an+1-an|<|an-an-1|<()2|an-1-an-2|<…<()n-1|a2-a1|<()n-1(|a1|+|a2|),
又0<a
1<
,
∴
0<a2=<.
∴|a
1|+|a
2|<1.
∴:|a
n+1-a
n|<(
)
n-1(n∈N
*);
(Ⅲ)對任意n,m,k∈N
*且n>m>k,
∴m-1≥k,
∴|a
m-a
n|=|(a
m-a
m+1)+(a
m+1-a
m+2)+…+(a
n-1-a
n)|
≤|a
m-a
m+1|+|a
m+1-a
m+2|+…+|a
n-1-a
n|
<()m-1+()m+…+()n-2=
<()m-1≤()k.
點評:本題考查了數(shù)列遞推式,考查了利用放縮法證明不等式,解答的關(guān)鍵是借助于已知條件靈活變形,適當(dāng)?shù)姆糯螅疾榱藢W(xué)生的邏輯思維能力,是壓軸題.