已知函數(shù)f(x)=
sin(x-3π)cos(x+
π
2
)
tan(π-x)
+sin(2x+
π
3
).
(1)求f(
π
12
)的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
考點:運用誘導公式化簡求值,正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的求值
分析:(1)由條件利用誘導公式求得f(x)=-
1
2
sin2x+sin(2x+
π
3
),從而求得f(
π
12
)的值.
(2)進一步化簡函數(shù)的解析式為f(x)=
3
2
cos2x,再根據(jù)余弦函數(shù)的增區(qū)間求得f(x)的單調(diào)遞增區(qū)間.
解答: 解:(1)由于函數(shù)f(x)=
sin(x-3π)cos(x+
π
2
)
tan(π-x)
+sin(2x+
π
3
)=
-sin(3π-x)•(-sinx)
-tanx
+sin(2x+
π
3
)=
sinx•sinx
-tanx
+sin(2x+
π
3

=-sinxcosx+sin(2x+
π
3
)=-
1
2
sin2x+sin(2x+
π
3
),
∴f(
π
12
)=-
1
2
sin
π
6
+sin
π
2
=-
1
4
+1=
3
4

(2)由于f(x)=-
1
2
sin2x+sin(2x+
π
3
)=-
1
2
sin2x+sin2xcos
π
3
+cos2xsin
π
3
=
3
2
cos2x,
令2kπ-π≤2x≤2kπ,k∈z,求得kπ-
π
2
≤x≤kπ,故f(x)的增區(qū)間為[kπ-
π
2
,kπ],k∈z.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,余弦函數(shù)的增區(qū)間,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系XOY中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線C 的極坐標方程為 ρsin2θ=4cosθ,直線l的參數(shù)方程為
x=tcosa
y=1+tsina
,(t為參數(shù),0≤a<π).
(Ⅰ)化曲線C 的極坐標方程為直角坐標方程;
(Ⅱ)若直線l 經(jīng)過點(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到A1DE的位置,使A2C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
3
=1的一條漸近線被圓(x-2)2+y2=4所截得的弦長為2,則該雙曲線的實軸長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校舉行演講比賽,9位評委給選手A打出的分數(shù)如莖葉圖所示,統(tǒng)計員在去掉一個最高分和一個最低分后,算得平均分為91,復核員在復核時,發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清,若統(tǒng)計員計算無誤,則數(shù)字x應該是(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是以F1F2為焦點的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上一點,若
PF1
PF2
=0,且∠PF1F2=30°,|F1F2|=2,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC=CF=2a,p為AB的中點.
(Ⅰ)求證:面FBC∥面EAD;
(Ⅱ)求證:平面PCF⊥平面PDE;
(Ⅲ)求四面體PCEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分別是CC1、C1D1、D1D、DC的中點,N是BC的中點,點M在四邊形EFGH上或其內(nèi)部運動,且使MN⊥AC.對于下列命題:
①點M可以與點H重合;
②點M可以與點F重合;
③點M可以在線段FH上;
④點M可以與點E重合.
其中正確命題的序號是
 
(把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是以2為周期的偶函數(shù),當x∈[0,1]時,f(x)=
x
,那么在區(qū)間(-1,3)內(nèi),關(guān)于x的方程f(x)=kx+k(k∈R)有4個根,則k的取值范圍為( 。
A、0<k≤
1
4
或k=
3
6
B、0<k≤
1
4
C、0<k<
1
4
或k=
3
6
D、0<k<
1
4

查看答案和解析>>

同步練習冊答案