已知點(diǎn)P(sinα+cosα,tanα)在第二象限,則角α的取值范圍是
 
考點(diǎn):三角函數(shù)值的符號(hào)
專題:三角函數(shù)的求值
分析:根據(jù)題意列出不等式組,判斷出sinα<0且cosα<0,再確定角所在的象限并求出角α的取值范圍.
解答: 解:因?yàn)辄c(diǎn)P(sinα+cosα,tanα)在第二象限,
所以
sinα+cosα<0
tanα>0
,所以sinα<0且cosα<0,
則α是第三象限角,即α∈(2kπ+π,2kπ+
2
)(k∈Z),
故答案為:(2kπ+π,2kπ+
2
)(k∈Z).
點(diǎn)評(píng):本題考查三角函數(shù)值的符號(hào),以及象限角的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-2|x-
1
2
|,0<x≤1
log2014x,x>1
,若直線y=m與函數(shù)y=f(x)三個(gè)不同交點(diǎn)的橫坐標(biāo)依次為x1,x2,x3,且x1<x2<x3,則x3的取值范圍是( 。
A、(2,2014)
B、(1,2014)
C、(2013,2014)
D、(1,2013)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足2x+y=8,當(dāng)2≤x≤3時(shí),求
y
x
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x、y、z滿足x2+y2+z2=1,則S=
1+z
2xyz
的最小值為( 。
A、3
B、
3(
3
+1)
2
C、4
D、2(
2
+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(2x-1)的定義域是( 。
A、[0,+∞)
B、[1,+∞)
C、(0,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx+cosωx(1<ω<3)的一條對(duì)稱軸方程為x=
π
8

(1)求f(x)的最小正周期;
(2)若f2
α
2
)=f2
β
2
),α,β∈(0,
π
2
)
,且α≠β,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=1+
x
x2+1
的最大值為M,最小值為N,則M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A(1,2),B(3,4),C(-2,4),求:
(1)邊AB所在的直線方程;
(2)以點(diǎn)C為圓心,且與AB直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+1,x≤0
-2lgx,x>0
,則f(100)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案