【題目】在平面直角坐標(biāo)系,動點(diǎn)到定點(diǎn)的距離與它到直線的距離相等.

1)求動點(diǎn)的軌跡的方程;

2)設(shè)動直線與曲線相切于點(diǎn),與直線相交于點(diǎn)

證明:以為直徑的圓恒過軸上某定點(diǎn).

【答案】(1);(2

【解析】試題分析:1)設(shè)出動點(diǎn)的坐標(biāo)為,然后直接利用拋物線的定義求得拋物線方程;(2)設(shè)出直線的方程為: ),聯(lián)立直線方程和拋物線方程化為關(guān)于的一元二次方程后由判別式等于得到的關(guān)系,求出的坐標(biāo),求出切點(diǎn)坐標(biāo),再設(shè)出的坐標(biāo),然后由向量的數(shù)量積為0證得答案,并求得的坐標(biāo).

試題解析:1)解:設(shè)動點(diǎn)E的坐標(biāo)為,

由拋物線定義知,動點(diǎn)E的軌跡是以為焦點(diǎn), 為準(zhǔn)線的拋物線,

所以動點(diǎn)E的軌跡C的方程為

2)證明:由,消去得:

因?yàn)橹本l與拋物線相切,所以,即

所以直線l的方程為

,得.所以Q

設(shè)切點(diǎn)坐標(biāo),則,

解得: , 設(shè),

所以當(dāng),即所以

所以以PQ為直徑的圓恒過軸上定點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

從而證明.

試題解析:((1)由題意,所以

,所以

,則,與矛盾,故 .

(2)由(1)可知, ,

,可得,

,

當(dāng)時, , 單調(diào)遞減,且

當(dāng)時, , 單調(diào)遞增;且

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,

,

.

【點(diǎn)睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)南新舊動能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時代”邁向“黃河時代”的夢想,肩負(fù)著山東省新舊動能轉(zhuǎn)換先行先試的重任,是全國新舊動能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過開放平臺匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶先行區(qū),對市場進(jìn)行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機(jī)器人(百個),需另投人成本(萬元),且,由市場調(diào)研知,每個機(jī)器人售價6萬元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷售完.

(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百個)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤超過2000(萬元)時,才選擇落戶新舊動能轉(zhuǎn)換先行區(qū).請問該企業(yè)能否落戶先行區(qū),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

1)若關(guān)于的方程的解集中恰有一個元素,求的值;

2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面六個句子中,錯誤的題號是________.

①周期函數(shù)必有最小正周期;

②若,至少有一個為

為第三象限角,則;

④若向量的夾角為銳角,則

⑤存在,,使成立;

⑥在中,O內(nèi)一點(diǎn),且,則O的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是  

A. 棱柱的側(cè)面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉(zhuǎn)一周所得的幾何體是圓錐

查看答案和解析>>

同步練習(xí)冊答案