曲線y=x+2cosx在點(diǎn)(0,2)處的切線方程是(  )
A、y=x+2
B、y=-x+2
C、y=2x+2
D、y=-2x+2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:通過求導(dǎo)求出切線的斜率,把斜率和點(diǎn)代入點(diǎn)斜式方程即可.
解答:解:∵點(diǎn)(0,2)在曲線上,
∴斜率k=y′(0)=1-2sinx|x=0=1,
∴所求方程為:y=x+2.
故答案為:A.
點(diǎn)評(píng):考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,以及過改點(diǎn)的切線方程,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

行列式
.
10   -1
21    3
-1-3   1
.
中-3的代數(shù)余子式的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的焦點(diǎn)F也是雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn),P是拋物線與雙曲線的一個(gè)交點(diǎn),若|PF|=5,則此雙曲線的離心率e=( 。
A、
2
B、
3
C、2
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x,y)=0上存在兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線的自公切線,下列方程的曲線有自公切線的是( 。
A、x2+y-1=0
B、|x|-
4-y2
+1=0
C、x2+y2-x-|x|-1=0
D、3x2-xy+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=ax2(a>0)與曲線y=lnx在它們的公共點(diǎn)P(s,t)處具有公共切線,則a=( 。
A、
e
B、
1
2
e
C、e
D、
1
2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x≤1),若f(x)的圖象的一條切線與直線x=1及x軸所圍成的三角形面積為S,則S的最大值等于( 。
A、2
B、1
C、e
D、
e
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ex+1在點(diǎn)(0,2)處的切線,被圓x2+(x-1)2=1截得的弦長為( 。
A、2
B、
3
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,l]時(shí),f(x)=x
1
2
,則f(
3
2
)
,f(
11
10
)
,f(
13
8
)
由小到大的排列順序是( 。
A、f(
13
8
)
f(
3
2
)
f(
11
10
)
B、f(
3
2
)
f(
13
8
)
f(
11
10
)
C、f(
11
10
)
f(
3
2
)
f(
13
8
)
D、f(
13
8
)
f(
11
10
)
f(
3
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(10分)已知數(shù)列的通項(xiàng)公式為

(1)證明:數(shù)列是等差數(shù)列

(2)求此數(shù)列的前二十項(xiàng)和.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案