已知圓x2+y2-2x+4y-4=0,則圓心P為( 。
分析:由圓x2+y2-2x+4y-4=0,配方得到(x-1)2+(y+2)2=9.即可得出.
解答:解:由圓x2+y2-2x+4y-4=0,可得(x-1)2+(y+2)2=9.
故圓心P為(1,-2).
故選C.
點評:本題考查了原點標準方程及其配方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當線段AB最小時,則直線AB方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標原點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標原點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當線段AB最小時,則直線AB方程為( 。
A.x+y=2B.2x+y=
10
C.
2
x+y=
6
D.3x+y=2
5

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市閔行區(qū)七寶中學高三(下)摸底數(shù)學試卷(解析版) 題型:選擇題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當線段AB最小時,則直線AB方程為( )
A.x+y=2
B.
C.
D.

查看答案和解析>>

同步練習冊答案