【題目】在直角坐標系xOy中,已知直線l過點P2,2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρρcos2θ4cosθ0.

1)求C的直角坐標方程;

2)若lC交于AB兩點,求的最大值.

【答案】1;(2

【解析】

1)把曲線的極坐標方程兩邊同時乘以,結(jié)合,,,即可求出曲線的極坐標方程;

2)由已知直接寫出直線的參數(shù)方程,把直線的參數(shù)方程代入曲線的極坐標方程,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.

1)曲線的極坐標方程為,兩邊同時乘以,得,把互化公式代入可得:,即,所以C的直角坐標方程為y24x.

2)設(shè)直線的傾斜角為,可得參數(shù)方程為:為參數(shù)),代入拋物線方程可得:,

,,

當且僅當時,等號成立,

的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A33個歐洲國家B1B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構(gòu)為了解某地區(qū)中學生在校月消費情況,隨機抽取了 100名中學生進行調(diào)查.如圖是根據(jù)調(diào)査的結(jié)果繪制的學生在校月消費金額的頻率分布直方圖.已知三個金額段的學生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學生稱為“高消費群”.

(1)求的值,并求這100名學生月消費金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“高消費群”與性別有關(guān)?

附: (其中樣本容量)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有四個不相等的實數(shù)根,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)討論函數(shù)的單調(diào)性;

(II)設(shè).如果對任意,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)二次函數(shù)的圖像過點,且對于任意實數(shù),不等式恒成立

(1)求的表達式;

(2)設(shè),若上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.軸交于兩點,是圓上不同于的一動點,所在直線分別與交于.

(1)當時,求以為直徑的圓的方程;

2)證明:以為直徑的圓截軸所得弦長為定值.

查看答案和解析>>

同步練習冊答案