已知函數(shù)f(x)=log2(x+-a)的定義域為A,值域為B.
(1)當a=4時,求集合A;
(2)設(shè)I=R為全集,集合M={x|y=},若(CIM)∪(CIB)=Φ,求實數(shù)a的取值范圍.
【答案】分析:(1)直接利用真數(shù)大于0解不等式即可求函數(shù)f(x)的定義域;
(2)由(CRM)∪(CRB)=∅,得M=B=R,利用若I=R,只要u=x+-a可取到一切正實數(shù),再利用則x>0及Umin≤0即可求得實數(shù)a的取值范圍.
解答:解:(1)當a=4時,由x+-4==>0,
解得0<x<1或x>3,故A={x|0<x<1或x>3}
(2)由(CRM)∪(CRB)=∅,得CRM=∅,且CRB=∅,即M=B=R,
若B=R,只要u=x+-a可取到一切正實數(shù),則x>0及umin≤0,
∴Umin=2-a≤0,
解得a≥2…①
若M=R,則a=5或  解得1<a≤5…②
由①②得實數(shù)a的取值范圍為[2,5].
點評:本題是對函數(shù)定義域、值域以及函數(shù)性質(zhì)問題的綜合考查.在求一個函數(shù)的定義域的恒成立問題的轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案