如果函數(shù)f(x)在區(qū)間D上是“凸函數(shù)”,則對于區(qū)間D內任意的x1,x2,…,xn,有≤f()成立.已知函數(shù)y=sinx在區(qū)間[0,π]上是“凸函數(shù)”,則在△ABC中,sinA+sinB+sinC的最大值是( )
A.
B.
C.
D.
【答案】分析:利用“凸函數(shù)”的定義得到恒成立的不等式,利用三角形的內角和為π,求出函數(shù)的最大值.
解答:解:∵y=sinx在區(qū)間[0,π]上是“凸函數(shù)”,
==

∴sinA+sinB+sinC的最大值是
故選D
點評:本題考查理解題中的新定義、并利用新定義求最值、考查三角形的內角和為π.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•海珠區(qū)二模)已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函數(shù)g(x)的單調遞減區(qū)間為(-
13
,1)
,求函數(shù)g(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)y=g(x)的圖象在點P(-1,1)處的切線方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天河區(qū)三模)設f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導函數(shù)為f'(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質P(a).
(1)設函數(shù)f(x)=Inx+
b+2x+1
(x>1)
,其中b為實數(shù).
(i)求證:函數(shù)f(x)具有性質P(b);
(ii)求函數(shù)f(x)的單調區(qū)間.
(2)已知函數(shù)g(x)具有性質P(2),給定x1,x2∈(1,+∞),x1<x2,設m為實數(shù),a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•順義區(qū)二模)對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)判斷函數(shù)f(3x)=2×3x(x∈N)是否是N上的嚴格增函數(shù);
(Ⅱ)證明:f(3k)=3f(k);
(Ⅲ)是否存在正整數(shù)k,使得f(k)=2012,若存在求出k值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•順義區(qū)一模)對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
(Ⅰ)證明:f(3k)=3f(k);
(Ⅱ)求f(3k-1)(k∈N*)的值;
(Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•武進區(qū)模擬)函數(shù)f(x)=
1
2
ax2-bx-lnx
,a>0,f'(1)=0.
(1)①試用含有a的式子表示b;②求f(x)的單調區(qū)間;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l∥AB,則稱AB存在“伴隨切線”,當x0=
x1+x2
2
時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B,使得AB存在“中值伴隨切線”?若存在,求出A、B的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案