求sin20°cos50°+sin220°+sin240°的值.

解:原式=(1-cos40°)+(1+cos100°)+sin20°cos50°,
=1+(cos100°-cos40°)+(sin70°-sin30°),
=-sin70°sin30°+sin70°,
=
分析:利用二倍角公式化簡,降次升角,然后利用和差化積和積化和差公式,化簡即可求出表達(dá)式的值.
點評:本題是基礎(chǔ)題,考查三角函數(shù)的和差化積與積化和差公式,二倍角公式的應(yīng)用,考查計算能力,這是一道好題,具有推廣價值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值
(1)(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)
=
 
;
(2)cos200°cos80°+cos110°cos10°=
 
;
(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=
 
;
(4)cos
π
7
cos
7
cos
3
7
π
=
 
;
(5)sin20°sin40°sin80°=
 

(6)cos20°+cos100°+cos140°=
 
;
(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若α為第二象限角,化簡cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

②求
2sin10°-cos20°
sin20°
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項式.
一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由倍角公式cos2x=2cos2x-1,可知cos2x可以表示為cosx的二次多項式.
對于cos3x,我們有
cos3x=cos(2x+x)=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2(sinxcosx)sinx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cocs.
可見cos3x可以表示為cosx的三次多項式.
一般地,存在一個n次多項式Pn(t),使得cosnx=Pn(cosx),這些多項式Pn(t)稱為切比雪夫(P.L.Tschebyscheff)多項式.
(1)請嘗試求出P4(t),即用一個cosx的四次多項式來表示cos4x.
(2)化簡cos(60°-θ)cos(60°+θ)cosθ,并利用此結(jié)果求sin20°sin40°sin60°sin80°的值.

查看答案和解析>>

同步練習(xí)冊答案