過雙曲線
x2
a2
-
y2
b2
=1 (a>0,b>0)
的左焦點F(-c,0)作圓x2+y2=a2的切線,切點為E,延長FE交拋物線y2=4cx于點P,若E為線段FP的中點,則雙曲線的離心率為
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:雙曲線的右焦點的坐標(biāo)為(c,0),利用O為FF'的中點,E為FP的中點,可得OE為△PFF'的中位線,從而可求|PF|,再設(shè)P(x,y),由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率.
解答: 解:設(shè)雙曲線的右焦點為F',則F'的坐標(biāo)為(c,0)
拋物線為y2=4cx,則F'為拋物線的焦點,
由O為FF'的中點,E為FP的中點,
則OE為△PFF'的中位線,
即有OE∥PF',|OE|=
1
2
|PF'|,
由EF為圓x2+y2=a2的切線,
則|OE|=a,則|PF'|=2a,
設(shè)P(x,y),則由拋物線的定義可得x+c=2a,
∴x=2a-c,y2=4c(2a-c),
又PF'⊥PF,|FF'|=2c,
由勾股定理得,y2+4a2+4a2=4c2,
即4c(2a-c)+4a2=4(c2-a2
得e2-e-1=0,
∴e=
5
+1
2

故答案為:
5
+1
2
點評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查拋物線的定義,考查直線和圓相切的條件,以及中位線定理的運用,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C:(x-k)2+(y-2k+1)2=1,則圓C的圓心軌跡方程是
 
,若直線l:3x+ty-1=0截圓C所得的弦長與k無關(guān),則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax5+1在R上是增函數(shù),則( 。
A、a=0B、a≥0
C、a<0D、a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1
x
,設(shè)an=f(n)(n∈N+),
(1)求證:an<1;
(2){an}是遞增數(shù)列還是遞減數(shù)列?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1
+
1
2-x
的定義域是( 。
A、{x|x≥-1}
B、{x|x≥-1且x≠2}
C、{x|x>-1且x≠2}
D、{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與雙曲線x2-2y2=2有公共漸近線,且過點M(2,-2)的雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足下列條件:(1)對?x∈R,函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)<0恒成立;(2)函數(shù)y=f(x+2)的圖象關(guān)于點(-2,0)對稱;對?x、y∈R有f(x2-8x+21)+f(y2-6y)>0恒成立.則當(dāng)0<x<4時,x2+y2的取值范圍為( 。
A、(3,7)
B、(9,25)
C、[9,41)
D、(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+,x2y=2,求3x+y-1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(α-
π
4
)=-cos2α
,則sin2α的值為( 。
A、-
1
2
B、
1
2
C、
3
4
D、-
3
4

查看答案和解析>>

同步練習(xí)冊答案