去年2月29日,我國發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》指出空氣質(zhì)量指數(shù)在0-50為優(yōu)秀,各類人群可正;顒(dòng).惠州市環(huán)保局對(duì)我市2014年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測(cè),得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.
(1)求a的值;
(2)根據(jù)樣本數(shù)據(jù),試估計(jì)這一年度的空氣質(zhì)量指數(shù)的平均值;(注:設(shè)樣本數(shù)據(jù)第i組的頻率為pi,第i組區(qū)間的中點(diǎn)值為xi(i=1,2,3,…,n),則樣本數(shù)據(jù)的平均值為
.
X
=x1p1+x2p2+x3p3+…+xnpn
(3)如果空氣質(zhì)量指數(shù)不超過15,就認(rèn)定空氣質(zhì)量為“特優(yōu)等級(jí)”,則從這一年的監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取3天的數(shù)值,其中達(dá)到“特優(yōu)等級(jí)”的天數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(1)由題意,得(0.02+0.032+a+0.018)×10=1,由此能求出a.
(2)求出50個(gè)樣本中空氣質(zhì)量指數(shù)的平均值,由樣本估計(jì)總體,可估計(jì)這一年度空氣質(zhì)量指數(shù)的平均值.(3)由題意知ξ~B(3,
1
5
)
,ξ的取值為0,1,2,3,由此能求出ξ的分布列和數(shù)學(xué)期望.
解答: (1)解:由題意,得(0.02+0.032+a+0.018)×10=1,…(1分)
解得a=0.03.…(2分)
(2)解:50個(gè)樣本中空氣質(zhì)量指數(shù)的平均值為
.
X
=0.2×10+0.32×20+0.3×30+0.18×40=24.6
…(3分)
由樣本估計(jì)總體,可估計(jì)這一年度空氣質(zhì)量指數(shù)的平均值約為24.6.…(4分)
(3)解:利用樣本估計(jì)總體,
該年度空氣質(zhì)量指數(shù)在(5,15]內(nèi)為“特優(yōu)等級(jí)”,
且指數(shù)達(dá)到“特優(yōu)等級(jí)”的概率為0.2,則ξ~B(3,
1
5
)
.…(5分)
ξ的取值為0,1,2,3,…(6分)
P(ξ=0)=
C
0
3
(
4
5
)3=
64
125

P(ξ=1)=
C
1
3
(
1
5
)×(
4
5
)2=
48
125
,
P(ξ=2)=
C
2
3
(
1
5
)2×(
4
5
)=
12
125
,
P(ξ=3)=
C
3
3
(
1
5
)3=
1
125
.…(10分)
ξ0123
P
64
125
48
125
12
125
a
∴ξ的分布列為:…(11分)
Eξ=0×
64
125
+1×
48
125
+2×
12
125
+3×
1
125
=
3
5
.…(12分)
(或者Eξ=3×
1
5
=
3
5
).
點(diǎn)評(píng):本題考查實(shí)數(shù)值的求法,考查平均值的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
3
2
,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(0,0),其導(dǎo)函數(shù)f′(x)=2x-5,當(dāng)x∈(n+2,n+3](n∈N*)時(shí),函數(shù)f(x)值域中整數(shù)值的個(gè)數(shù)記為an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(
2
)an+
4
a2n-1a2n+1
(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}不是常數(shù)列,a1+a2=4,a2、a5、a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)bn=
1
anan+1
,Sn是數(shù)列{bn}的前n項(xiàng),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡求值:-22×(-
27
8
 -
1
3
-(0.7)lg1+2 log23
(2)若log7(log3x)=0,求x 
1
2
+x -
1
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2cos2x-
1
2
的圖象與x軸及直線x=0、x=π所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 如圖,四邊形ABCD是等腰梯形,AB∥DC,A(-1,-2),B(6,5),D(0,2).
(Ⅰ)求點(diǎn)C的坐標(biāo).
(Ⅱ)求等腰梯形ABCD對(duì)角線交點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列曲線的標(biāo)準(zhǔn)方程:長軸長為12,離心率為
2
3
,焦點(diǎn)在x軸上的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn2-(n2+n-1)Sn-(n2+n)=0
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
an
3n
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案