若橢圓C:的離心率e為, 且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1) 求橢圓C的方程;
(2) 設(shè)點M(2,0), 點Q是橢圓上一點, 當(dāng)|MQ|最小時, 試求點Q的坐標(biāo);
(3) 設(shè)P(m,0)為橢圓C長軸(含端點)上的一個動點, 過P點斜率為k的直線l交橢圓與
A,B兩點, 若|PA|2+|PB|2的值僅依賴于k而與m無關(guān), 求k的值.
(1)
(2)(5,0)
(3)k=±.
【解析】
試題分析:解:(1)∵依題意a=5,c=3∴橢圓C的方程為: 2¢
(2)設(shè)Q(x,y), -5≤x≤5
∴
∵對稱軸
∴當(dāng)x=5時, |MQ|2達到最小值,
∴當(dāng)|MQ|最小時, Q的坐標(biāo)為(5,0) ·6¢
(3)設(shè)A(x1,y1), B(x2,y2), P(m,0)(-5≤m≤5), 直線l:y=k(x-m)
由
得, 8¢
∴y1+y2=k(x1-m)+k(x2-m)=k(x1+x2)-2km=
y1y2=k2(x1-m)(x2-m)=k2x1x2-k2m(x1+x2)+k2m2=· 10¢
∴
=(x1+x2)2-2x1x2-2a(x1+x2)+(y1+y2)2-2y1y2-2y1y2+2a2
= -12分
∵|PA|2+|PB|2的值僅依賴于k而與m無關(guān)
∴512-800k2=0∴k=±. 13¢
考點:直線與橢圓的位置關(guān)系
點評:主要是考查了直線與橢圓的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源:江蘇省揚州中學(xué)2012屆高三最后沖刺熱身數(shù)學(xué)試題 題型:044
若橢圓C:的離心率e為,且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1)求橢圓C的方程;
(2)設(shè)點M(2,0),點Q是橢圓上一點,當(dāng)|MQ|最小時,試求點Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長軸(含端點)上的一個動點,過P點斜率為k的直線l交橢圓與A,B兩點,若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省珠海四中高三(上)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若橢圓C:的離心率e為,且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1)求橢圓C的方程;
(2)設(shè)點M(2,0),點Q是橢圓上一點,當(dāng)|MQ|最小時,試求點Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長軸(含端點)上的一個動點,過P點斜率為k的直線l交橢圓與A,B兩點,若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com