把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:
1
3   5
7    9   11
………………………
……………………………
設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).
(1)若,求的值;
(2)若記三角形數(shù)表中從上往下數(shù)第行各數(shù)的和為,求證.(本題滿分14分)

(1) (2)見解析。

解析
試題分析:
(1)∵三角形數(shù)表中前行共有個(gè)數(shù),……2分
∴第行最后一個(gè)數(shù)應(yīng)當(dāng)是所給奇數(shù)列中的第項(xiàng).
故第行最后一個(gè)數(shù)是.    ……………………3分
因此,使得的m是不等式的最小正整數(shù)解.

………………5分
于是,第45行第一個(gè)數(shù)是
 …………………………………………………………6分
(2)第n行最后一個(gè)數(shù)是,且有n個(gè)數(shù),若將看成第n行第一個(gè)數(shù),則第n行各數(shù)成公差為的等差數(shù)列,
故.………………………………………8分
, …………………10分
…………12分
……………………………………………………………14分
考點(diǎn):本題考查等差數(shù)列的前n項(xiàng)和公式、放縮法、裂項(xiàng)法以及分析問題解決問題的能力。
點(diǎn)評(píng):常見的裂項(xiàng)公式:,,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共14分)
在單調(diào)遞增數(shù)列中,,不等式對(duì)任意都成立.
(Ⅰ)求的取值范圍;
(Ⅱ)判斷數(shù)列能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè),,求證:對(duì)任意的,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)已知等差數(shù)列的前項(xiàng)和為,前項(xiàng)和為.
1)求數(shù)列的通項(xiàng)公式
2)設(shè), 求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,已知, (為常數(shù),),且成等差數(shù)列.
(1) 求的值;  
(2) 求數(shù)列的通項(xiàng)公式;
(3) 若數(shù)列 是首項(xiàng)為1,公比為的等比數(shù)列,記

.求證: ,().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)等比數(shù)列中,已知。(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列是等差數(shù)列,且的第2項(xiàng)、第4項(xiàng)分別相等。若數(shù)列的前項(xiàng)和,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知數(shù)列為等差數(shù)列,公差是數(shù)列的前項(xiàng)和, 且.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科題)(本小題12分)
已知數(shù)列{an}是等差數(shù)列,a2=3,a5=6,數(shù)列{bn}的前n項(xiàng)和是Tn,且Tnbn=1.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)的和;
(2)求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知是一個(gè)公差大于的等差數(shù)列,且滿足.?dāng)?shù)列,,…,是首項(xiàng)為,公比為的等比數(shù)列.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,已知
(Ⅰ)求證:數(shù)列為等差數(shù)列,并寫出關(guān)于的表達(dá)式;
(Ⅱ)若數(shù)列項(xiàng)和為,問滿足的最小正整數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案