已知數(shù)列{an}滿足a1=2,an+1=數(shù)學(xué)公式(n∈N*),則連乘積a1•a2…a2010•a2011的值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    -6
C
分析:直接求出數(shù)列的前6項,推出數(shù)列是周期數(shù)列,求出一個周期的乘積,然后求出a1•a2…a2010•a2011的值,即可.
解答:a1=2,an+1=,
所以a2==-3,a3==-,a4==,a5==2,
所以數(shù)列是以4為周期的周期數(shù)列,a1•a2•a3•a4=2×(-3)×()×=1,
所以a1•a2…a2010•a2011=a1•a2•a3×(a1•a2•a3•a4502=2×(-3)×(-)=3.
故選C.
點(diǎn)評:本題是中檔題,考查遞推數(shù)列的關(guān)系式,滲透了周期數(shù)列這一知識點(diǎn),高考?碱}型,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案