精英家教網(wǎng)從某學(xué)校高三年級男生隨機抽取若干名測量身高,發(fā)現(xiàn)測量數(shù)據(jù)全部介于155cm和195cm之間且每個男生被抽取到的概率為
18
,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),┅,第八組[190,195),右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組的頻數(shù)均為4,第六組,第七組,第八組的頻率依次構(gòu)成等差數(shù)列.
(Ⅰ)補充完整頻率分布直方圖,并估計該校高三年級全體男生身高不低于180cm的人數(shù);
(Ⅱ)從最后三組中任取2名學(xué)生參加學(xué);@球隊,求他們來自不同組的事件概率.
分析:(Ⅰ)設(shè)第六組、第七組的頻率分別為x,y,根據(jù)所有小矩形的面積和為1與第六組,第七組,第八組的頻率依次構(gòu)成等差數(shù)列,列出方程組求出x,y,進而求出小矩形的高,補全頻率分布直方圖;由頻率分布直方圖得身高不低于180cm的為最后三組,計算可得最后三組的頻率,由樣本容量計算全校高三男生的總?cè)藬?shù),再計算身高不低于180cm的人數(shù);
(Ⅱ)計算身高在[180,185)內(nèi)的人數(shù)為8;身高在[185,190)內(nèi)的人數(shù)為6;身高在[190,195)內(nèi)的人數(shù)為4;求從最后三組中任取2名學(xué)生的選法數(shù)與2名學(xué)生來自不同組的選法數(shù),由古典概型公式,計算可得答案.
解答:解:(I)設(shè)第六組、第七組的頻率分別為x,y,則第六組,第七組的頻數(shù)分別為15x,15y,
由題意得:
2y=x+5×0.008
x+y=1-5(0.008+0.016+0.04+0.04+0.06+0.008)
x=0.08
y=0.06

∴第六組,第七組小矩形的高分別為0.016,0.012.
其頻率分布直方圖如圖:
精英家教網(wǎng)
由頻率分布直方圖得身高在180cm以上為最后三組,
則最后三組頻率為(0.016+0.012+0.008)×5=0.18,
樣本容量=
4
0.008×5
=100,∴該校高三男生共有800人,
這所學(xué)校高三年級全體男生身高在180cm以上的人數(shù)為800×0.18=144.
(II)由已知得身高在[180,185)內(nèi)的人數(shù)為100×0.016×5=8,
身高在[185,190)內(nèi)的人數(shù)為100×0.012×5=6;
身高在[190,195)內(nèi)的人數(shù)為4;
∴從最后三組中任取2名學(xué)生參加學(xué)校籃球隊,有
C
2
18
=153種選法;
2名學(xué)生來自不同組的選法有8×6+6×4+4×8=104種選法,
∴2名學(xué)生來自不同組的事件概率為
104
153
點評:本題考查了古典概型概率計算及頻率分布直方圖的應(yīng)用,關(guān)鍵是正確分析頻率分布直方圖的數(shù)據(jù)信息,準確計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ-N(μ+?2).則
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160 cm和184 cm之間,將測量結(jié)果按如下方式分成6組:第一組 [160,164],第二組[164,168],…,第6組[180,184],下圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;

(Ⅱ)求這50名男生身高在172 cm以上(含172 cm)的人數(shù);

(Ⅲ)在這50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為,求的數(shù)學(xué)期望.

參考數(shù)據(jù):

.則

=0.6826,

="0.9544,"

=0.9974.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160 cm和184 cm之間,將測量結(jié)果按如下方式分成6組:第一組 [160,164],第二組[164,168],…,第6組[180,184],下圖是按上述分組方法得到的頻率分布直方圖.

    (Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;

    (Ⅱ)求這50名男生身高在172 cm以上(含172 cm)的人數(shù);

    (Ⅲ)在這50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為,求的數(shù)學(xué)期望.

    參考數(shù)據(jù):

    若.則

    =0.6826,

    =0.9544,

    =0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ-N(μ+?2).則
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.

查看答案和解析>>

同步練習(xí)冊答案