求函數(shù)y=
x
x+1
的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:要求函數(shù)的定義域,只需列出滿(mǎn)足原式的不等式組,解之即可.
解答: 解:要使原式有意義,只需x+1≠0即可,所以x≠-1.
故函數(shù)的定義域?yàn)閧x|x∈R且x≠-1}.
點(diǎn)評(píng):本題考查了函數(shù)定義域的求法,一般是通過(guò)列出不等式組求解即可,要注意結(jié)果是集合或區(qū)間的形式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a,b>0)上任一點(diǎn)分別作兩條漸近線的平行線,則這兩條直線與漸近線所圍成的平行四邊形的面積為
 
(用a、b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次研究性學(xué)習(xí)中,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R),三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)
給出命題:你認(rèn)為上述三個(gè)命題中正確的個(gè)數(shù)有( 。
甲:函數(shù)f(x)的值域?yàn)椋?1,1);乙:若x1≠x2,則一定有f(x1)≠f(x2);
丙:若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)≥
x
1+n|x|
對(duì)任意n∈N*恒成立.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為異面直線,則下列命題中正確的是( 。
A、過(guò)a,b外一點(diǎn)P一定可以引一條與a,b都平行的直線
B、過(guò)a,b外一點(diǎn)P一定可以作一個(gè)與a,b都平行的平面
C、過(guò)a一定可以作一個(gè)與b平行的平面
D、過(guò)a一定可以作一個(gè)與b垂直的平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,O是△ABC的外接圓的圓心,M是BC邊的中點(diǎn),AB=4,AC=2,求
AM
AO
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求導(dǎo):y=
10x-10-x
10x+10-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購(gòu)物量1至4件5至8件9至12件13至16件17件以上
顧客數(shù)(人)x3025y10
結(jié)算時(shí)間(分鐘/人)11.522.53
已知這100位顧客中任抽1人,購(gòu)物量超過(guò)8件的顧客占55%.
(Ⅰ)求x,y的值;
(2)求這100人的平均結(jié)算時(shí)間;
(3)求這100人中,結(jié)算時(shí)間不少于2分鐘的概率;
(4)將這100個(gè)人的結(jié)算時(shí)間看作一個(gè)容量為100的簡(jiǎn)單隨機(jī)樣本,將頻率視為概率,將結(jié)算時(shí)間用x表示,對(duì)應(yīng)概率用P表示,完成下表:
x11.522.53
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一段長(zhǎng)為40米的籬笆圍一塊矩形綠地,矩形一邊長(zhǎng)為x米,面積為y平方米,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系,并求它的定義域.(x為自變量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的中心為坐標(biāo)原點(diǎn),經(jīng)過(guò)點(diǎn)P(1,
6
6
),離心率e=
6
3

(1)求橢圓C的方程;
(2)是否存在過(guò)橢圓C的右焦點(diǎn)F且與橢圓C交于M,N兩點(diǎn)的直線l,使得在直線x=
3
2
上可以找到一點(diǎn)B,滿(mǎn)足△MNB為正三角形?如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案