【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.

【答案】(1) (2)見解析

【解析】

1)由題可得:從班和班的樣本數(shù)據(jù)中各隨機抽取一個共有種不同情況,列出的情況有,,三種,問題得解。

2的可能取值為1,2,3.分別求出各種取值的概率即可列出分布列,再由數(shù)學期望公式求解即可。

(1)班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)有3個,

班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)也有3個,

班和班的樣本數(shù)據(jù)中各隨機抽取一個共有種不同情況.

其中的情況有,三種,

的概率.

(2)因為所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中,班有2人,班有3人,共有5人,設抽到班同學的人數(shù)為

的可能取值為1,2,3.

,.

的分布列為:

1

2

3

數(shù)學期望為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在古代三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“趙爽弦圖”,由四個全等的直角三角形圍成一個大正方形,中間空出一個小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a,F(xiàn)向大正方形區(qū)城內(nèi)隨機投擲一枚飛鏢,要使飛鏢落在小正方形內(nèi)的概率為,則_____________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,已知,平面平面,點分別是的中點,,連接.

1)若,并異面直線所成角的余弦值的大;

2)若二面角的余弦值的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)yH(x),若在其定義域內(nèi)存在x0,使得x0·H(x0)=1成立,則稱x0為函數(shù)H(x)倒數(shù)點.已知函數(shù)f(x)=ln xg(x)=(x+1)2-1.

(1)求證:函數(shù)f(x)倒數(shù)點”,并討論函數(shù)f(x)倒數(shù)點的個數(shù);

(2)若當x≥1,不等式xf(x)≤m[g(x)-x]恒成立試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. 先把高二年級的名學生編號為,再從編號為名學生中隨機抽取名學生,其編號為,然后抽取編號為,,的學生,這樣的抽樣方法是系統(tǒng)抽樣法.

B. 正態(tài)分布在區(qū)間上取值的概率相等

C. 若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于

D. 若一組數(shù)據(jù)的平均數(shù)是,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為:為參數(shù)),直線與曲線分別交于、兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)求線段的長和的積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,2),,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.

(1)求點M的軌跡方程;

(2)|OP|=|OM|,l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,若橢圓上的點與兩個焦點構成的三角形中,面積最大為1.

1)求橢圓的標準方程;

2)設直線與橢圓的交于兩點,為坐標原點,且,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射手每次射擊擊中目標的概率是,且各次射擊的結果互不影響.

(Ⅰ)假設這名射手射擊次,求有次連續(xù)擊中目標,另外次未擊中目標的概率;

(Ⅱ)假設這名射手射擊次,記隨機變量為射手擊中目標的次數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案