如圖,PA、PB、PC兩兩垂直,PA=PB=PC,G是△PAB的重心,E是BC上的一點(diǎn),且BE=BC,F(xiàn)是PB上的一點(diǎn),且PF=PB.
求證:
(1)GF⊥平面PBC;
(2)FE⊥BC;

【答案】分析:(1)要證明GF⊥平面PBC,只需證明PA⊥PB,PA⊥PC,推出PA⊥平面PBC,則GF⊥平面PBC;
(2)在EC上取一點(diǎn)Q使CQ=BC,連接FQ,要證明FE⊥BC,只需證明FE⊥BQ即可;
解答:證明:(1)連接BG和PG,并延長(zhǎng)分別交PA、AB于M和D,在△PBM中,
∵PF=PB,G是△PAB的重心,(4分)
∴MG=BM,∴GF∥PM.又PA⊥PB,PA⊥PC,
∴PA⊥平面PBC,則GF⊥平面PBC.(7分)

(2)在EC上取一點(diǎn)Q使CQ=BC,(9分)
連接FQ,又PF=PB,
∴FQ∥PC.
∵PB=PC,
∴FB=FQ.(12分)
∵BE=BC,
∴E是BQ的中點(diǎn),
∴FE⊥BQ,即FE⊥BC.(14分)
點(diǎn)評(píng):本題考查直線與平面平行的判定,直線與直線垂直,考查邏輯思維能力,空間想象能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,PA,PB分別是⊙O的切線,A,B為切點(diǎn),AC是⊙O的直徑,已知∠BAC=35°,∠P的度數(shù)為
70°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),連接OA,OB,AB,若∠P=60°,則∠OAB=
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,PA,PB是⊙O的切線,點(diǎn)A,B為切點(diǎn),AC是⊙O的直徑,∠ACB=70°.求∠P的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的兩條切線,切點(diǎn)分別為A、B若直徑AC=12cm,∠P=60°,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA、PB是⊙O的切線,切點(diǎn)分別為A、B,點(diǎn)C在⊙O上.如果∠P=50°,那么∠ACB等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案