(2013•鄭州二模)在正項(xiàng)等比數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn,且-a3,a2,a4成等差數(shù)列,則S7的值為( 。
分析:設(shè)出等比數(shù)列的公比,由已知條件列式求出公比,則等比數(shù)列的前7項(xiàng)和可求.
解答:解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q(q>0),且a1=1,
由-a3,a2,a4成等差數(shù)列,得2a2=a4-a3
2a1q=a1q3-a1q2
因?yàn)閝>0.
所以q2-q-2=0.
解得q=-1(舍),或q=2.
S7=
a1(1-q7)
1-q
=
1•(1-27)
1-2
=127

故選C.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和公式,考查了學(xué)生的計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(1-x)+f(1+x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式組
f(m2-6m+23)+f(n2-8n)<0
m>3
,那么m2+n2的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(e)+lnx,則f′(e)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)函數(shù)f(x)的定義域?yàn)殚_(kāi)區(qū)間(a,b),導(dǎo)函數(shù)f'(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開(kāi)區(qū)間(a,b)內(nèi)有極大值點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,當(dāng)z的最大值為6時(shí),k的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)若x∈(e-1,1),a=lnx,b=(
1
2
)lnx
,c=elnx,則a,b,c的大小關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案