(本小題滿分14分)
已知數(shù)列的前項和為,若
(Ⅰ)求證是等差數(shù)列,并求出的表達式;
(Ⅱ)若,求證
(Ⅰ) (Ⅱ)略
(I)證明:∵
∴當n≥2時,an = SnSn – 1--1分又
,---3分
Sn = 0,則an = 0,∴a1 = 0與a1 =矛盾!∴Sn≠0,Sn – 1≠0.
 --5分又
∴{}是首項為2,公差為2的等差數(shù)列  ---6分
{}是等差數(shù)列.∴  ---7分
∴當  ----8分
又當  ---9分
(Ⅱ)證明:由(I)知 ----10分
---12分
 ------14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)的前項和為.
(I)求數(shù)列的通項公式;(II)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知數(shù)列滿足,其中,函數(shù).
(1)若數(shù)列滿足,,求;  (2)若數(shù)列滿足.數(shù)列滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=bx+1為x的一次函數(shù),  b為不等于1的常數(shù), 且
g(n)=, 設an= g(n)-g(n-1) (n∈N), 則數(shù)列{an}是  (       )
A 等差數(shù)列     B等比數(shù)列    C 遞增數(shù)列    D 遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知各項均為正數(shù)的數(shù)列的前項和滿足,且.(1)求的通項公式;(2)設數(shù)列滿足,并記的前項和,比較 的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

成等差數(shù)列的四個數(shù)的和為,第二數(shù)與第三數(shù)之積為,求這四個數(shù) 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的通項公式為 則{an}的最大項是
A.a1B.a2C.a3D.a4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對大于或等于2的自然數(shù)m的n次冪進行

如下方式的“分裂”如右圖,仿此,52的“分裂”
中最大的數(shù)是    ,若的“分裂”
中最小的數(shù)是21,則m的值為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列中,,則的通項     .

查看答案和解析>>

同步練習冊答案