如圖,在正方體中,、分別是、的中點(diǎn),則異面直線所成角的大小是__________.

試題分析:以D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè)棱長(zhǎng)為2,則D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),,所以異面直線所成角的大小是。
 
考點(diǎn):
點(diǎn)評(píng):本題考查空間異面直線的夾角求解,采用了向量的方法.向量的方法能降低空間想象難度,但要注意向量坐標(biāo)的準(zhǔn)確.否則容易由于計(jì)算失誤而出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線和平面,下列四個(gè)命題中,正確的是(  )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.

(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問(wèn)在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說(shuō)明 理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點(diǎn), 點(diǎn)M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、b是兩條不同的直線,、是兩個(gè)不同的平面,則下列四個(gè)命題中正確的是(    )
A.若⊥b,,則b∥B.若,,則
C.若,則 D.若⊥b,,b⊥,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平行四邊形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一個(gè)動(dòng)點(diǎn),現(xiàn)將該平行四邊形沿對(duì)角線BD折成直二面角ABDC,如圖2所示.

(1)若F、G分別是AD、BC的中點(diǎn),且AB∥平面EFG,求證:CD∥平面EFG;
(2)當(dāng)圖1中AEEC最小時(shí),求圖2中二面角AECB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,與平面所成的角的余弦值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

沿對(duì)角線AC將正方形ABCD折成直二面角后,則AC與BD所成的角等于_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

球內(nèi)接正四棱錐的高為3,體積為6,則這個(gè)球的表面積是(   )
A.16πB.20πC.24πD.32π

查看答案和解析>>

同步練習(xí)冊(cè)答案