某校舉辦一場籃球投籃選拔比賽,比賽的規(guī)則如下:每個(gè)選手先后在二分區(qū)、三分區(qū)和中場跳球區(qū)三個(gè)位置各投一球,只有當(dāng)前一次球投進(jìn)后才能投下一次,三次全投進(jìn)就算勝出,否則即被淘汰.已知某選手在二分區(qū)投中球的概率為,在三分區(qū)投中球的概率為,在中場跳球區(qū)投中球的概率為,且在各位置投球是否投進(jìn)互不影響.
(Ⅰ)求該選手被淘汰的概率;
(Ⅱ)該選手在比賽中投球的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.(注:本小題結(jié)果可用分?jǐn)?shù)表示)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆山東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
某校舉辦一場籃球投籃選拔比賽,比賽的規(guī)則如下:每個(gè)選手先后在二分區(qū)、三分區(qū)和中場跳球區(qū)三個(gè)位置各投一球,只有當(dāng)前一次球投進(jìn)后才能投下一次,三次全投進(jìn)就算勝出,否則即被淘汰. 已知某選手在二分區(qū)投中球的概率為,在三分區(qū)投中球的概率為,在中場跳球區(qū)投中球的概率為,且在各位置投球是否投進(jìn)互不影響.
(Ⅰ)求該選手被淘汰的概率;
(Ⅱ)該選手在比賽中投球的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.(注:本小題結(jié)果可用分?jǐn)?shù)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com