如圖,PA為⊙O的切線,A為切點,PBC是過點O的割線,PA=10,PB=5.求:
(Ⅰ)⊙O的半徑;
(Ⅱ)sin∠BAP的值.
考點:與圓有關的比例線段,弦切角
專題:選作題,立體幾何
分析:(Ⅰ)利用切割線定理,求出BC,即可求出⊙O的半徑;
(Ⅱ)證明△PAB∽△PCA,求出AB,BC,即可sin∠BAP的值.
解答: 解:(Ⅰ)因為PA為⊙O的切線,所以PA2=PB•PC,
又由PA=10,PB=5,所以PC=20,BC=20-5=15      …(2分).
因為BC為⊙O的直徑,所以⊙O的半徑為7.5.…(4分)
(Ⅱ)∵PA為⊙O的切線,∴∠ACB=∠PAB,…(5分)
又由∠P=∠P,∴△PAB∽△PCA,
AB
AC
=
PB
PA
=
5
10
=
1
2
…(7分)
設AB=k,AC=2k,
∵BC為⊙O的直徑,
∴AB⊥AC,
BC=
k2+(2k)2
=
5
k
…(8分)
∴sin∠BAP=sin∠ACB=
AB
BC
=
k
5
k
=
5
5
…(10分)
點評:本題考查了切割線定理,考查三角形相似的判斷與性質(zhì)的運用,解題的關鍵是運用切割線定理列方程求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-6≤x<4},N={x|-2<x≤8},則M∩N的解集為( 。
A、[-2,4]
B、(-2,4)
C、[-6,8)
D、(-2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項函數(shù){an}滿足a1=1,an+12=an(an+4)+4,n∈N*
(1)求{an}的通項公式.
(2)求數(shù)列{(-1)nan2}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a、b、c>0,求證:(b+c-a)(c+a-b)(a+b-c)≤abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是實數(shù),函數(shù)f(x)=ax2+(a+1)x-2lnx.
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=2時,過原點O作曲線y=f(x)的切線,求切點的橫坐標;
(3)設定義在D上的函數(shù)y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x),當x≠x0時,若
g(x)-h(x)
x-x0
<0在D內(nèi)恒成立,則稱點P為函數(shù)y=g(x)的“巧點”.當a=-
1
4
時,試問函數(shù)y=f(x)是否存在“巧點”?若存在,請求出“巧點”的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某市的房屋面積x(平方米)與購房費用y(萬元),有如下的統(tǒng)計數(shù)據(jù):
x(平方米) 80 90 100 1l0
y(萬元) 42 46 53 59
(1)用最小二乘法求出y關于x的線性回歸方程
y
=bx+a.
(2)在已有的四組數(shù)據(jù)中任意抽取兩組,求恰有一組實際值小于預測值的概率.(參考數(shù)據(jù):
n
i=1
xi2
=36600,
n
i=1
xiyi
=19290,線性回歸方程的系數(shù)公式為b=
n
i=1
xiyi-n
.
xy
n
i=1
xi-nx-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2lnx-x2+ax,a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)求滿足條件的所有實數(shù)a,使e-1≤f(x)≤e2對x∈[1,e]恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中B、C兩點坐標分別為B(4,0)、C(0,-2),連結(jié)AC.

(1)求拋物線的函數(shù)關系式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有18件,那么此樣本的容量n=
 

查看答案和解析>>

同步練習冊答案