【題目】如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點(diǎn)E和F分別為BC和A1C的中點(diǎn).
(1)求證:EF∥平面A1B1BA;
(2)求直線A1B1與平面BCB1所成角的大。
【答案】(1)詳見解析(2)30°
【解析】
(1)連接A1B,結(jié)合三角形中位線定理,得到平行,結(jié)合直線與平面平行,的判定定理,即可。(2)取的中點(diǎn)N,連接,利用直線與平面垂直判定定理,得到平面,找出即為所求的角,解三角形,計算該角 的大小,即可。
解:(1)證明:如圖,連接A1B.在△A1BC中,
因?yàn)?/span>E和F分別是BC和A1C的中點(diǎn),所以EF∥BA1.
又EF平面A1B1BA,
所以EF∥平面A1B1BA
(2)解:因?yàn)?/span>AB=AC,E為BC的中點(diǎn),所以AE⊥BC.
因?yàn)?/span>AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.
又BC∩BB1=B,所以AE⊥平面BCB1,.
取BB1的中點(diǎn)M和B1C的中點(diǎn)N,連接A1M,A1N,NE.
因?yàn)?/span>N和E分別為B1C和BC的中點(diǎn),所以NE∥B1B,NE=B1B,
故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.
因?yàn)?/span>AE⊥平面BCB1,所以A1N⊥平面BCB1,從而∠A1B1N為直線A1B1與平面BCB1所成的角.
在△ABC中,可得AE=2,所以A1N=AE=2.
因?yàn)?/span>BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,
由AB⊥BB1,有A1M⊥BB1.
在Rt△A1MB1中,可得A1B1=4.
在Rt△A1NB1中,sin∠A1B1N=,
因此∠A1B1N=30°.
所以直線A1B1與平面BCB1所成的角為30°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
()若,求函數(shù)的單調(diào)遞減區(qū)間.
()求函數(shù)的極值.
()若函數(shù)在區(qū)間上恰有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2(cos θ+sin θ).
(1)求C的直角坐標(biāo)方程;
(2)直線l: (t為參數(shù))與曲線C交于A,B兩點(diǎn),與y軸交于點(diǎn)E,求|EA|+|EB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)在年收入之和為2.5(百萬元)和3(百萬元)兩區(qū)中抽取兩分店調(diào)查,求這兩分店來自同一區(qū)的概率
(2)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(3)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y-0.05x2-1.4,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店,才能使A區(qū)平均每個分店的年利潤最大?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的方程: ,P為橢圓上的一點(diǎn)(點(diǎn)P在第三象限上),圓P 以點(diǎn)P為圓心,且過橢圓的左頂點(diǎn)M與點(diǎn)C(﹣2,0),直線MP交圓P與另一點(diǎn)N.
(1)求圓P的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A在橢圓E上,求使得 取得最小值的點(diǎn)A的坐標(biāo);
(3)若過橢圓的右頂點(diǎn)的直線l上存在點(diǎn)Q,使∠MQN為鈍角,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和Sn=2n+1,
(1)求{an}的通項公式
(2)設(shè)bn=log2an+2 , 求 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)y=的值的程序框圖如圖所示.
(1)指出程序框圖中的錯誤,并寫出算法;
(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com