(2013•青浦區(qū)一模)我們把定義在R上,且滿足f(x+T)=af(x)(其中常數(shù)a,T滿足a≠1,a≠0,T≠0)的函數(shù)叫做似周期函數(shù).
(1)若某個(gè)似周期函數(shù)y=f(x)滿足T=1且圖象關(guān)于直線x=1對(duì)稱.求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)T=1,a=2時(shí),某個(gè)似周期函數(shù)在0≤x<1時(shí)的解析式為f(x)=x(1-x),求函數(shù)y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對(duì)于確定的T>0且0<x≤T時(shí),f(x)=3x,試研究似周期函數(shù)函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請(qǐng)說明理由.
分析:(1)利用函數(shù)的對(duì)稱性與滿足性質(zhì)f(x+T)=af(x),根據(jù)偶函數(shù)的定義證明即可;
(2)利用函數(shù)為似周期函數(shù)的性質(zhì)求解即可;
(3)利用分類討論思想,分析函數(shù)為單調(diào)函數(shù)的條件求解.
解答:解:(1)∵x∈R關(guān)于原點(diǎn)對(duì)稱,
又函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,f(1-x)=f(1+x)①
又T=1,∴f(x+1)=af(x),②,
用-x代替x得f(-x+1)=af(-x),③
由①②③可知af(x)=af(-x),∵a≠1且a≠0,∴f(x)=f(-x).即函數(shù)f(x)是偶函數(shù);
(2)當(dāng)n≤x<n+1(n∈Z)時(shí),0≤x-n<1(n∈Z)f(x)=2f(x-1)=22f(x-2)=…=2nf(x-n)=2n(x-n)(n+1-x);
(3)當(dāng)nT<x≤(n+1)T(n∈N)時(shí),0<x-nT≤T(n∈N)f(x)=af(x-T)=a2f(x-2T)=…=anf(x-nT)=an3x-nT
顯然a<0時(shí),函數(shù)y=f(x)在區(qū)間(0,+∞)上不是單調(diào)函數(shù),
又a>0時(shí),f(x)=an3x-nT,x∈(nT,(n+1)T],n∈N是增函數(shù),
此時(shí)f(x)∈(an,an3T],x∈(nT,(n+1)T],n∈N,
若函數(shù)y=f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),那么它必須是增函數(shù),則必有an+1≥an3T,
解得a≥3T
點(diǎn)評(píng):本題考查函數(shù)的周期性、函數(shù)的奇偶性、單調(diào)性的判斷與證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)如果執(zhí)行如圖的框圖,輸入N=5,則輸出的數(shù)等于
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)已
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),滿足
m
n
=0

(1)將y表示為x的函數(shù)f(x),并求f(x)的最小正周期;
(2)已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊長,若f(x)≤f(
A
2
)
對(duì)所有的x∈R恒成立,且a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)已知集合A={x|x≤2},B={x|x≥a},且A∪B=R,則實(shí)數(shù)a的取值范圍是
a≤2
a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)若
.
135
a2b2c2
246
.
=a2A2+b2B2+c2C2,則C2化簡后的最后結(jié)果等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)(文)已知正三棱柱的底面正三角形邊長為2,側(cè)棱長為3,則它的體積V=
3
3
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案