【題目】已知點在曲線上,過原點,且與軸的另一個交點為,若線段和曲線上分別存在點、點和點,使得四邊形(點 , , 順時針排列)是正方形,則稱點為曲線完美點.那么下列結(jié)論中正確的是( ).

A. 曲線上不存在完美點

B. 曲線上只存在一個完美點,其橫坐標(biāo)大于

C. 曲線上只存在一個完美點,其橫坐標(biāo)大于且小于

D. 曲線上存在兩個完美點,其橫坐標(biāo)均大于

【答案】B

【解析】如圖,如果點完美點則有,以為圓心, 為半徑作圓(如圖中虛線圓)交軸于, (可重合),交拋物線于點, 當(dāng)且僅當(dāng)時,在圓上總存在點,使得的角平分線,即,利用余弦定理可求得此時,即四邊形是正方形,即點完美點,如圖,結(jié)合圖象可知,點一定是上方的交點,否則在拋物線上不存在使得 也一定是上方的點,否則, , , , 不是順時針,再考慮當(dāng)點橫坐標(biāo)越來越大時, 的變化情況:

設(shè),當(dāng)時, ,此時圓與軸相離,此時點不是完美點,故只需要考慮,當(dāng)增加時, 越來越小,且趨近于,而當(dāng)時, ;故曲線上存在唯一一個完美點其橫坐標(biāo)大于.故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考二次函數(shù)的圖象過原點,對,恒有成立,設(shè)數(shù)列滿足

(I)求證:對,恒有成立;

(II)求函數(shù)的表達(dá)式;

(III)設(shè)數(shù)列項和為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 平面 ,

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓上一點關(guān)于原點的對稱點為, 為其右焦點,若,設(shè),且,則該橢圓離心率的最大值為(

A. B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, .

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點,過右焦點軸不垂直的直線交橢圓于, 兩點.

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線的斜率為時,求的面積.

Ⅲ)在線段上是否存在點,使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)若,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.

)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線l過點P(-3,2),傾斜角為,且.曲線C的參數(shù)方程為為參數(shù)).直線l與曲線C交于A、B兩點,線段AB的中點為M

(Ⅰ)求直線l的參數(shù)方程和曲線C的普通方程;

(Ⅱ)求線段PM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面四邊形中, , 為正三角形,則面積的最大值為( )

A. 2 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案