【題目】已知函數(shù).

(1)若函數(shù)在點處切線的斜率為4,求實數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

【答案】(1)6;(2)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(3)

【解析】

(1)利用導(dǎo)數(shù)的幾何意義得到,從而求出a的值.(2)a分類討論,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.(3)先轉(zhuǎn)化為上恒成立,再化為上恒成立,再求上的最大值即得a的取值范圍.

(1),而,即,解得.

(2)函數(shù)的定義域為.

①當時,的單調(diào)遞增區(qū)間為;

②當時,.

變化時,的變化情況如下:

由此可知,函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(3),于是.

因為函數(shù)上是減函數(shù),所以上恒成立,

上恒成立.

又因為函數(shù)的定義域為,所以有在[上恒成立.

于是有,設(shè),則,所以有

,

時,有最大值,于是要使上恒成立,只需,

即實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在試驗E“連續(xù)拋擲一枚骰子2次,觀察每次擲出的點數(shù)”中,事件A表示隨機事件“第一次擲出的點數(shù)為1”,事件表示隨機事件“第一次擲出的點數(shù)為1,第二次擲出的點數(shù)為j,事件B表示隨機事件“2次擲出的點數(shù)之和為6”,事件C表示隨機事件“第二次擲出的點數(shù)比第一次的大3”,

1)試用樣本點表示事件;

2)試判斷事件AB,ACBC是否為互斥事件;

3)試用事件表示隨機事件A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知頂點是坐標原點的拋物線的焦點軸正半軸上,圓心在直線上的圓軸相切,且關(guān)于點對稱.

(1)求的標準方程;

(2)過點的直線交于,與交于,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的極大值為6,極小值為2,則的單調(diào)遞減區(qū)間是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長為2,則以下四個命題中錯誤的是

A. 直線為異面直線 B. 平面

C. D. 三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著汽車消費的普及,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017 年成交的二手車的交易前的使用時間(以下簡稱“使用時間”)進行統(tǒng)計,得到如圖1所示的頻率分布直方圖,在圖1對使用時間的分組中,將使用時間落入各組的頻率視為概率.

(1)若在該交易市場隨機選取3輛2017年成交的二手車,求恰有2輛使用年限在的概率;

(2)根據(jù)該汽車交易市場往年的數(shù)據(jù),得到圖2所示的散點圖,其中 (單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.

①由散點圖判斷,可采用作為該交易市場二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):

試選用表中數(shù)據(jù),求出關(guān)于的回歸方程;

②該汽車交易市場擬定兩個收取傭金的方案供選擇.

甲:對每輛二手車統(tǒng)—收取成交價格的的傭金;

乙:對使用8年以內(nèi)(含8年)的二手車收取成交價格的的傭金,對使用時間8年以上(不含 8年)的二手車收取成交價格的的傭金.

假設(shè)采用何種收取傭金的方案不影響該交易市場的成交量,根據(jù)回歸方程和圖表1,并用,各時間組的區(qū)間中點值代表該組的各個值.判斷該汽車交易市場應(yīng)選擇哪個方案能獲得更多傭金.

附注:

于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若對任意都有成立,則實數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案