已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點(diǎn).
(i)若為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(ii)若與橢圓的交點(diǎn),求的面積的最小值.
(1);(2) (i),(ii)

試題分析:(1)由題意得 又,解得,.因此所求橢圓的標(biāo)準(zhǔn)方程為.                               ……4分
(2)(i)假設(shè)所在的直線斜率存在且不為零,設(shè)所在直線方程為,.解方程組,
所以.               ……6分
設(shè),由題意知,所以,即,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002653786280.png" style="vertical-align:middle;" />是的垂直平分線,所以直線的方程為,即,因此,              ……8分
,所以,故
又當(dāng)或不存在時(shí),上式仍然成立.
綜上所述,的軌跡方程為.                    ……10分
(ii)當(dāng)存在且時(shí),由(1)得,,
解得,,        
所以
,.                     ……12分
由于
,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)等號(hào)成立,此時(shí)面積的最小值是.……14分
當(dāng),.當(dāng)不存在時(shí),.綜上所述,的面積的最小值為.……16分
解法二:
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240026555181798.png" style="vertical-align:middle;" />,
,,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)等號(hào)成立,
此時(shí)面積的最小值是
當(dāng)
當(dāng)不存在時(shí),
綜上所述,的面積的最小值為
點(diǎn)評(píng):對(duì)于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時(shí)結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解;而對(duì)于最值問題,則可將該表達(dá)式用直線斜率k表示,然后根據(jù)題意將其進(jìn)行化簡(jiǎn)結(jié)合表達(dá)式的形式選取最值的計(jì)算方式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點(diǎn),雙曲線的實(shí)軸為,為雙曲線上一點(diǎn)(不同于),直線,分別與直線交于兩點(diǎn)
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的兩個(gè)焦點(diǎn)為為坐標(biāo)原點(diǎn),點(diǎn)在雙曲線上,且,若、成等比數(shù)列,則等于
A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為,若P為其上一點(diǎn), , 則雙曲線離心率的取值范圍為(     )
A.(3,+)B.C.(1,3)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左、右焦點(diǎn)為、,直線x=m過且與橢圓相交于A,B兩點(diǎn),則的面積等于          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)分別是雙曲線的左、右焦點(diǎn),過且垂直于軸的直線與雙曲線交于兩點(diǎn),若是鈍角三角形,則該雙曲線離心率的取值范圍是
(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),過點(diǎn)作一直線交橢圓于、兩點(diǎn) .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為(   )
A.B.C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為,則它的漸近線方程為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案