分析 (I)由PA⊥平面ABC得PA⊥BC,結合AC⊥BC得出BC⊥平面PAC,于是平面PAC⊥平面PBC;
(II)由BC⊥平面PAC得BC⊥AD,結合AD⊥PC得出AD⊥平面PBC,于是AD⊥PB,結合PB⊥DE得出PB⊥平面ADE.
解答 證明:(I)∵AB是圓O的直徑,∴BC⊥AC,
∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
∴BC⊥平面PAC,
又BC?平面PBC,
∴平面PAC⊥平面PBC.
(II)由(I)可知BC⊥平面PAC,AD?平面PAC,
∴BC⊥AD,
又AD⊥PC,PC∩BC=C,PC?平面PBC,BC?平面PBC,
∴AD⊥平面PBC,又PB?平面PBC,
∴AD⊥PB,
又PB⊥DE,AD∩DE=D,AD?平面ADE,DE?平面ADE,
∴PB⊥平面ADE.
點評 本題考查了線面垂直的判定與性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
目的地/頻數(shù)/運輸時間 | 1 | 2 | 3 | 4 | 5 |
甲地 | 2 | 4 | 3 | 1 | |
乙地 | 1 | 3 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{3π}{4}$,$\frac{π}{4}$] | B. | [-$\frac{π}{2}$,$\frac{π}{2}$] | C. | [-π,0] | D. | [-$\frac{π}{4}$,$\frac{3π}{4}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 6 | D. | log6$\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com