【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說(shuō)法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是
【答案】C
【解析】
根據(jù)數(shù)列的性質(zhì)及每日新增確診病例變化曲線圖中的數(shù)據(jù)對(duì)各個(gè)選項(xiàng)進(jìn)行判斷,可得答案.
解:因?yàn)?/span>1月28日新增確診人數(shù)小于1月27日新增確診人數(shù),即,所以不是遞增數(shù)列,所以選項(xiàng)A錯(cuò)誤;
因?yàn)?/span>2月23日新增確診病例數(shù)為0,所以,所以數(shù)列不是遞增數(shù)列,所以選項(xiàng)B錯(cuò)誤;
因?yàn)?/span>1月31日新增病例數(shù)最多,從1月21日算起,1月31日是第11天,所以數(shù)列的最大項(xiàng)是,所以選項(xiàng)C正確;
數(shù)列的最大項(xiàng)是最后項(xiàng),所以選項(xiàng)D錯(cuò)誤,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估.將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評(píng)估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示.
評(píng)估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評(píng)定等級(jí) | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);
(2)從評(píng)估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營(yíng)銷(xiāo)經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明直線過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為的三棱柱中,側(cè)面底面, .
(1)求側(cè)棱與平面所成角的正弦值的大小;
(2)已知點(diǎn)滿(mǎn)足,在直線上是否存在點(diǎn),使平面?若存在,請(qǐng)確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,已知,對(duì)任意都成立,數(shù)列的前n項(xiàng)和為.
(1)若是等差數(shù)列,求k的值;
(2)若,,求;
(3)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng),,按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 (,且為常數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi),存在且時(shí),使不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠對(duì)這些產(chǎn)品進(jìn)行了安全和環(huán)保這兩個(gè)性能的質(zhì)量檢測(cè)。工廠決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),現(xiàn)將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào);
(1)如果從第8行第4列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的3件產(chǎn)品的編號(hào);
(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件產(chǎn)品的安全性能和環(huán)保性能的質(zhì)量檢測(cè)結(jié)果如下表:
檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為,求,的值。
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | 4 |
(3)已知,,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知當(dāng)(其中是自然對(duì)數(shù))時(shí),在上至少存在一點(diǎn),使成立,求的取值范圍;
(3)求證:當(dāng)時(shí),對(duì)任意, ,有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com