設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG∥AB.

(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線l過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),

若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線l的方程.

答案:
解析:

  解:(Ⅰ)設(shè)C(x,y)(xy≠0)

  ∵M(jìn)G∥AB,可設(shè)G(a,b),則M(0,b).

  ∴(1) 3分

  ∵M(jìn)是不等邊三解形ABC的外心,∴|MA|=|MC|,

  即(2) 4分

  由(1)(2)得

  所以三角形頂點(diǎn)C的軌跡方程為. 6分

  (Ⅱ)設(shè)直線l的方程為,,,

  由y. 8分

  ∵直線l與曲線D交于P、N兩點(diǎn),∴△=

  又,

  ∵,∴,∴ 10分

  ∴,∴. 11分

  ∴直線l的方程為. 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG∥AB.
(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線L過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ) 求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ) 設(shè)頂點(diǎn)C的軌跡為D,已知直線過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),

滿足OP⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ) 求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ) 設(shè)頂點(diǎn)C的軌跡為D,已知直線過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),

滿足OP⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆寧夏銀川二中高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題

(本小題滿分12分)
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ) 求三角形ABC頂點(diǎn)C的軌跡方程;
(Ⅱ) 設(shè)頂點(diǎn)C的軌跡為D,已知直線過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),
滿足OP⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高考模擬預(yù)測(cè)卷文科數(shù)學(xué)(一)(解析版) 題型:解答題

設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)設(shè)頂點(diǎn)C的軌跡為D,已知直線過(guò)點(diǎn)(0,1)并且與曲線D交于P、N兩點(diǎn),若O為坐標(biāo)原點(diǎn),滿足OP⊥ON,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案