【題目】設正項數(shù)列{an}的前n項和是Sn , 若{an}和{ }都是等差數(shù)列,且公差相等,則a1=

【答案】
【解析】設公差為d,首項a1∵{an},{ }都是等差數(shù)列,且公差相等,
∴2 = + ,
即2 = +
兩端平方得:4(2a1+d)=a1+3a1+3d+2 ,
4a1+d=2 ,
兩端再平方得:16 +8a1d+d2=4a1(3a1+3d),
∴4 ﹣4a1d+d2=0,
d=2a1 , 又兩數(shù)列公差相等,
=a2﹣a1=d=2a1 ,
=2a1 ,
解得:
2 =1,
∴a1= 或a1=0({an}為正項數(shù)列,故舍)
∴a1=
所以答案是:
【考點精析】解答此題的關鍵在于理解等差數(shù)列的性質的相關知識,掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中均為實數(shù), 為自然對數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設,若對任意的

恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形, ,平面平面, 分別為的中點, 的中點,過作平面分別與交于點.

(Ⅰ)當中點時,求證:平面平面;

(Ⅱ)當時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線, .

(1)當時,直線的交點,且它在兩坐標軸上的截距相反,求直線的方程;

(2)若坐標原點到直線的距離為,判斷的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓,在培訓期間他們參加的5次預寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學競賽,你認為選派哪位學生參加合適,說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在各棱長均為4的直四棱柱中,底面為菱形, 為棱上一點,且.

(1)求證:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教育學家分析發(fā)現(xiàn)加強語文樂隊理解訓練與提高數(shù)學應用題得分率有關,某校興趣小組為了驗證這個結論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓練,乙班常規(guī)教學無額外訓練,一段時間后進行數(shù)學應用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓練與提高數(shù)學應用題得分率有關?

(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學應用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學應用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學應用題,求小剛比小明現(xiàn)正確解答完的概率;

(3)現(xiàn)從乙班成績優(yōu)秀的8名同學中任意抽取兩人,并對他們點答題情況進行全程研究,記A、B兩人中被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

同步練習冊答案