若函數(shù)滿足,對定義域內(nèi)的任意恒成立,則稱為m函數(shù),現(xiàn)給出下列函數(shù):
;  ②;  ③;  ④
其中為m函數(shù)的序號是        .(把你認(rèn)為所有正確的序號都填上)
②③

試題分析:①若,則由,即,所以不存在常數(shù)使成立,所以①不是m函數(shù)。②若,由得,,此時(shí)恒成立,所以②是m函數(shù)。③若,由,所以當(dāng)時(shí),成立,所以③是m函數(shù)。④若,則由,即,所以,要使成立則有,所以方程無解,所以④不是m函數(shù)。所以為m函數(shù)的序號是②③。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)用函數(shù)單調(diào)性的定義證明函數(shù)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國是水資源較貧乏的國家之一,各地采用價(jià)格調(diào)控等手段來達(dá)到節(jié)約用水的目的,某市每戶每月用水收費(fèi)辦法是:水費(fèi)=基本費(fèi)+超額費(fèi)+定額損耗費(fèi).且有如下兩條規(guī)定:
①若每月用水量不超過最低限量立方米,只付基本費(fèi)10元加上定額損耗費(fèi)2元;
②若用水量超過立方米時(shí),除了付以上同樣的基本費(fèi)和定額損耗費(fèi)外,超過部分每立方米加付元的超額費(fèi).
解答以下問題:(1)寫出每月水費(fèi)(元)與用水量(立方米)的函數(shù)關(guān)系式;
(2)若該市某家庭今年一季度每月的用水量和支付的費(fèi)用如下表所示:
月份
用水量(立方米)
水費(fèi)(元)

5
17

6
22


12
 
試判斷該家庭今年一、二、三各月份的用水量是否超過最低限量,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù),對任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時(shí),數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù) 且),則的值域是     (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

右圖是函數(shù)的圖像,它與x軸有4個(gè)不同的公共點(diǎn).給出下列四個(gè)區(qū)間,不能用二分法求出函數(shù)在區(qū)間(  )上的零點(diǎn).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),若在區(qū)間上恒有解,則的取值范圍為   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在(0,)上的函數(shù)是它的導(dǎo)函數(shù),且恒有成立,則(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案