(2013•梅州一模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的8高調(diào)函數(shù),那么實數(shù)a的取值范圍是
[-
2
,
2
]
[-
2
2
]
分析:定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x-a2|-a2,畫出函數(shù)f(x)的圖象,可得8≥3a2-(-a2),從而可得結(jié)論.
解答:解:當x≥a2時f(x)=x-2a2,當0≤x<a2時f(x)=-x,再根據(jù)奇函數(shù)圖象關(guān)于原點對稱可作出f(x)的圖象,如下圖所示:

由f(x)為R上的8高調(diào)函數(shù),知f(x+8)≥f(x)恒成立,
由圖象得8≥3a2-(-a2),即a2≤2,解得-
2
a≤
2
點評:本題考查基本初等函數(shù)的性質(zhì),考查學生的閱讀能力,應(yīng)用知識分析解決問題的能力,考查數(shù)形結(jié)合的能力,是一個新定義問題,注意對于條件中所給的一個新的概念,要注意理解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•梅州一模)設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點,則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•梅州一模)設(shè)等比數(shù)列{an}的公比q=2,前n項和為Sn,則
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•梅州一模)已知雙曲線
x2
a2
-
y2
b2
 =1(a>b>0)
的兩條漸近線的夾角為
π
3
,則雙曲線的離心率為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•梅州一模)某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有甲、乙兩項技術(shù)指標需要檢測,設(shè)各項技術(shù)指標達標與否互不影響,按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標都達標的零件為合格品,為估計各項技術(shù)的達標概率,現(xiàn)從中抽取1000個零件進行檢驗,發(fā)現(xiàn)兩項技術(shù)指標都達標的有600個,而甲項技術(shù)指標不達標的有250個.
(1)求一個零件經(jīng)過檢測不為合格品的概率及乙項技術(shù)指標達標的概率;
(2)任意抽取該零件3個,求至少有一個合格品的概率;
(3)任意抽取該種零件4個,設(shè)ξ表示其中合格品的個數(shù),求隨機變量ξ的分布列.

查看答案和解析>>

同步練習冊答案