已知方程ax2-x+c=0的兩根為x1=1,x2=-
3
2
,那么,拋物線y=-ax2+x-c與x軸的交點坐標為
 
考點:拋物線與x軸的交點
專題:計算題
分析:根據(jù)方程解的意義得到-ax2+x-c=0的兩根為x1=1,x2=-
3
2
,則可理解為即x=1或-
3
2
時,y=-ax2+x-c=0,于是根據(jù)拋物線與x軸的交點問題得到拋物線y=-ax2+x-c與x軸的交點坐標.
解答:解:∵方程ax2-x+c=0的兩根為x1=1,x2=-
3
2
,
∴-ax2+x-c=0的兩根為x1=1,x2=-
3
2
,
即x=1或-
3
2
時,y=-ax2+x-c=0,
∴拋物線y=-ax2+x-c與x軸的交點坐標為(1,0)、(-
3
2
,0).
故答案為(1,0)、(-
3
2
,0).
點評:本題考查了拋物線與x軸的交點:求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標,令y=0,即ax2+bx+c=0,解關于x的一元二次方程即可求得交點橫坐標.△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

計算下列各題.
(1)-3-(-8)+(-4)
(2)-14-(1+0.5)×
1
3
÷(-4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+bx+c的圖象與x軸只有一個公共點A.
(1)若這個公共點為(2,0),求二次函數(shù)的表達式;
(2)若二次函數(shù)的圖象與y軸的交點為B,坐標原點為O,且△OAB是等腰三角形,求該二次函數(shù)的表達式,并說明它是如何由(1)中的二次函數(shù)的圖象平移得到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AD是△ABC的中線,G是△ABC的重心,聯(lián)結(jié)BG并延長交AC于點E,聯(lián)結(jié)DE,則S△ABC:S△CED的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-x2-4x+5交坐標軸于A、B、C三點,點P在第二象限的拋物線上,PF⊥x軸于F點,交AC于E點.若S△PAE:S△AEF=2:3,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么( 。
A、a<0,b>0,c>0
B、a>0,b<0,c>0
C、a>0,b<0,c<0
D、a>0,b>0,c<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,圖中有多少條線段,有多少條射線?并寫出其中能用圖中字母表示的線段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,點C在BA的延長線上,直線CD與⊙O相切于點D,弦DF⊥AB于點E,線段CD=10,連接BD;
(1)求證:∠CDE=∠DOC=2∠B;
(2)若BD:AB=
3
:2,求⊙O的半徑及DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,反比例函數(shù)y=
a
x
的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2)和C(-2,-3)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當x為何值時,kx+b-
a
x
>0?
(3)設直線AC與y軸交于點B,若P是坐標軸上一點,且滿足△PAB的面積是6,求點P的坐標.

查看答案和解析>>

同步練習冊答案