已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。
(1) ;(2)存在,.
【解析】
試題分析:(1)通過(guò)橢圓性質(zhì)列出的方程,其中離心率,分析圖形知道當(dāng)點(diǎn)P在短軸端點(diǎn)時(shí),面積取得最大值,所以,橢圓中,從而建立關(guān)于的方程,解出;即得到橢圓的標(biāo)準(zhǔn)方程;(2)對(duì)于存在性的問(wèn)題,要先假設(shè)存在,先設(shè)存在這樣的點(diǎn),,結(jié)合圖形知道要先討論,當(dāng)時(shí),明顯切線不垂直,當(dāng)時(shí),先設(shè)切線,與橢圓方程聯(lián)立,利用,得出關(guān)于斜率的方程,利用兩根之積公式,解出點(diǎn)坐標(biāo).即值.此題為較難題型,分類討論時(shí)要全面.
試題解析:(1)因?yàn)辄c(diǎn)在橢圓上,所以
因此當(dāng)時(shí),面積最大,且最大值為
又離心率為即
由于,解得
所求橢圓方程為
(2)假設(shè)直線上存在點(diǎn)滿足題意,設(shè),顯然當(dāng)時(shí),從點(diǎn)所引的兩條切線不垂直.
當(dāng)時(shí),設(shè)過(guò)點(diǎn)向橢圓所引的切線的斜率為,則的方程為
由消去,整理得:
所以, *
設(shè)兩條切線的斜率分別為,顯然,是方程的兩根,故:
解得:,點(diǎn)坐標(biāo)為或
因此,直線上存在兩點(diǎn)和滿足題意.
考點(diǎn):1.橢圓的性質(zhì)與標(biāo)準(zhǔn)方程;2.直線垂直的判斷;3.存在性問(wèn)題的求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn)在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過(guò)定點(diǎn)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中
F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com