如圖,平面平面,點E、F、O分別為線段PA、PB、AC的中點,點G是線段CO
的中點,,.求證:
(1)平面;
(2)∥平面
          

證明:由題意可知,為等腰直角三角形,
為等邊三角形.   …………………2分
(1)因為為邊的中點,所以,
因為平面平面,平面平面
平面,所以.…………………5分
因為平面,所以,
在等腰三角形內(nèi),,為所在邊的中點,所以,
,所以平面;…………………8分
(2)連AF交BE于Q,連QO.
因為E、F、O分別為邊PA、PB、PC的中點,
所以,且Q是△PAB的重心,…………………10分
于是,所以FG//QO.   …………………12分
因為平面EBO,平面EBO,所以∥平面. 

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

已知兩條不同直線、,兩個不同平面、,給出下列命題:
(1)若,則;(2)若,則
(3)若,則平行于內(nèi)的所有直線;(4)若;
(5)若在平面內(nèi)的射影互相垂直,則。
其中正確命題的序號是                (把你認為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖:四棱錐V-ABCD中,底面ABCD是邊長為2的正方形,
其他四個側(cè)面都是側(cè)棱長為的等腰三角形,則二面角V-ABC
的平面角為       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,
AD=,面SCD與面SAB所成二面角的正切值為                      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知三棱錐P—ABC的側(cè)棱PA、PB、PC兩兩垂直,下列結(jié)論正確的
有__________________.(寫出所有正確結(jié)論的編號)
;
②頂點P在底面上的射影是△ABC的垂心;
③△ABC可能是鈍角三角形;
④此三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

P是直線a外一定點,經(jīng)過P且與直線a成30°角的直線有________條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在正三棱柱中,.若二面角的大小為,則點到平面的距離為                。  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

平面上的點的距離是(       )

A. B. C. D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在長方體中,,所成角為,則直線與平面所成角的大小為_________.

查看答案和解析>>

同步練習冊答案