(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
(1)見解析;(2)=。
解析試題分析:(1)證明GH∥平面CDE,利用線面平行的判定定理,只需證明HG∥CD;
(2)證明FA⊥平面ABCD,求出SABCD,即可求得四棱錐F-ABCD的體積.
考點(diǎn):本試題主要考查了線面平行,考查四棱錐的體積,屬于中檔題
點(diǎn)評:解決該試題的關(guān)鍵是正確運(yùn)用線面平行的判定。
解:∵, ∴且
∴四邊形EFBC是平行四邊形 ∴H為FC的中點(diǎn)--------2分
又∵G是FD的中點(diǎn)
∴----------------------------------------4分
∵平面CDE,平面CDE
∴GH∥平面CDE --------------------------------------------------6分
(2)∵平面ADEF⊥平面ABCD,交線為AD
且FA⊥AD,
∴FA⊥平面ABCD. --------------------------------------------8
∵, ∴ 又∵ ,
∴BD⊥CD----------------------------------------------------------10分
∴ =
∴ =---------------------12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖示,AB是圓柱的母線,BD是圓柱底面圓的直徑,C是底面圓周上一點(diǎn),E是AC中點(diǎn),且.
(1)求證:;
(2)求直線BD與面ACD所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)如下的三個圖中,上面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出
(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,將該梯形繞著AB所在的直線為軸旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積和體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖4,已知平面是圓柱的軸截面(經(jīng)過圓柱的軸的截面),BC是圓柱底面的直徑,O為底面圓心,E為母線的中點(diǎn),已知
(I))求證:⊥平面;
(II)求二面角的余弦值.
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題8分)如圖,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE (2)平面PAC平面BDE
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四面體中,,,兩兩互相垂直,且.
(1)求證:平面平面;
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用平方米的材料制成一個有蓋的圓錐形容器,如果在制作過程中材料無損耗,且材料的厚度忽略不計(jì),底面半徑長為,圓錐母線的長為
(1)、建立與的函數(shù)關(guān)系式,并寫出的取值范圍;(6分)
(2)、圓錐的母線與底面所成的角大小為,求所制作的圓錐形容器容積多少立方米(精確到0. 01m3) (6分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com