已知:cos(-2α)=m,求cos(2α+)的值.

答案:
解析:

  解:∵(-2α)+(2α+)=π,

  ∴cos(2α+)=cos[π-(-2α)]

 。剑璫os(-2α)=-m.

  思路分析:根據(jù)(-2α)與(2α+)是互補的角,適當選擇誘導(dǎo)公式計算.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sin(π-α)-cos(π+α)=
2
3
(
π
2
<α<π)
,求sinα-cosα的值.
(2)已知sinαcosα=
3
8
π
4
<α<
π
2
,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(θ)=
cos(θ-
2
)•sin(
2
+θ)
sin(-θ-π)

(Ⅰ)若f(θ)=
1
3
,求tanθ的值;
(Ⅱ)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)已知sin(π-α)-cos(π+α)=
2
3
(
π
2
<α<π)
,求sinα-cosα的值.
(2)求函數(shù)y=cos2x-2sinx+3的最大值及相應(yīng)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2cosβ=cos(2α+β),那么tan(α+β)•tanα的值為
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:cos(α+
π
2
)=
4
5
,且α∈(π,
2
)
,sin(3π-β)=-
12
13
,且β∈(
3
2
π,2π)
,則sin(α+β)=
 

查看答案和解析>>

同步練習(xí)冊答案