【題目】若函數(shù)在其定義域上恰有兩個(gè)零點(diǎn),則正實(shí)數(shù)a的值為_____.
【答案】
【解析】
當(dāng)x≤0時(shí),f(x)=x+2x,單調(diào)遞增,由f(﹣1)f(0)<0,可得f(x)在(﹣1,0)有且只有一個(gè)零點(diǎn);x>0時(shí),f(x)=ax﹣lnx有且只有一個(gè)零點(diǎn),即有a有且只有一個(gè)實(shí)根.令g(x),求出導(dǎo)數(shù),求得單調(diào)區(qū)間,極值,即可得到a的值.
當(dāng)x≤0時(shí),f(x)=x+2x,單調(diào)遞增,
f(﹣1)=﹣1+2﹣1<0,f(0)=1>0,
由零點(diǎn)存在定理,可得f(x)在(﹣1,0)有且只有一個(gè)零點(diǎn);
則由題意可得x>0時(shí),f(x)=ax﹣lnx有且只有一個(gè)零點(diǎn),
即有a有且只有一個(gè)實(shí)根.
令g(x),g′(x),
當(dāng)x>e時(shí),g′(x)<0,g(x)遞減;
當(dāng)0<x<e時(shí),g′(x)>0,g(x)遞增.
即有x=e處取得極大值,也為最大值,且為,當(dāng)x
如圖g(x)的圖象,當(dāng)直線y=a(a>0)與g(x)的圖象
只有一個(gè)交點(diǎn)時(shí),則a.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解年廣告費(fèi)(單位:萬(wàn)元)對(duì)年銷售額(單位:萬(wàn)元)的影響,對(duì)近4年的年廣告費(fèi)和年銷售額的數(shù)據(jù)作了初步整理,得到下面的表格:
年廣告費(fèi)/萬(wàn)元 | 2 | 3 | 4 | 5 |
年銷售額/萬(wàn)元 | 26 | 39 | 49 | 54 |
(1)用年廣告費(fèi)作解釋變量,年銷售額作預(yù)報(bào)變量,在所給坐標(biāo)系中作出這些數(shù)據(jù)的散點(diǎn)圖,并判斷與哪一個(gè)更適合作為年銷售額關(guān)于年廣告費(fèi)的回歸方程類型(給出判斷即可,不必說(shuō)明理由).
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程.
(3)已知商品的年利潤(rùn)與,的關(guān)系為.根據(jù)(2)的結(jié)果,計(jì)算年廣告費(fèi)約為何值時(shí)(小數(shù)點(diǎn)后保留兩位),年利潤(rùn)的預(yù)報(bào)值最大.附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1,F2分別是橢圓的左、右焦點(diǎn),過(guò)的直線與相交 于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線的斜率為1,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列中的項(xiàng)按順序可以排列成如圖的形式,第一行項(xiàng),排;第二行項(xiàng),從左到右分別排,;第三行項(xiàng),……以此類推,設(shè)數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為( )
4,
4,43
4,43,4
4,43,4 , 4
…
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了30名同學(xué),對(duì)其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動(dòng).
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過(guò)2小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中,D點(diǎn)為棱AB的中點(diǎn).
求證:平面;
若,,求二面角的余弦值;
若,,兩兩垂直,求證:此三棱柱為正三棱柱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)定義在R上的奇函數(shù)y=f(x),對(duì)任意兩個(gè)不相鄰的實(shí)數(shù)x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)y=f(x)為“H函數(shù)”,下列函數(shù)為H函數(shù)的是( 。
A. f(x)=sinxB. f(x)=exC. f(x)=x3﹣3xD. f(x)=x|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com