已知函數(shù)f(x)=-x2+ax-b.
(1)若a,b都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率.
(2)若a,b都是從區(qū)間[0,4]任取的一個(gè)數(shù),求f(1)>0成立時(shí)的概率.

解:(1)由題意知本題是一個(gè)古典概型,
試驗(yàn)發(fā)生包含的事件a,b都從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù)的
基本事件總數(shù)為N=5×5=25個(gè)
函數(shù)有零點(diǎn)的條件為△=a2-4b≥0,即a2≥4b
∵事件“a2≥4b”包含:(0,0),(1,0),(2,0),
(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),
(4,2),(4,3),(4,4)
∴事件“a2≥4b”的概率為;

(2)f(1)=-1+a-b>0,∴a-b>1
則a,b都是從區(qū)間[0,4]任取的一個(gè)數(shù),有f(1)>0,
即滿足條件:
轉(zhuǎn)化為幾何概率如圖所示,
∴事件“f(1)>0”的概率為
分析:(1)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件a,b都從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù)的基本事件總數(shù)為5×5個(gè),函數(shù)有零點(diǎn)的條件為△=a2-4b≥0,即a2≥4b,列舉出所有事件的結(jié)果數(shù),得到概率.
(2)由題意知本題是一個(gè)幾何概型,試驗(yàn)發(fā)生包含的事件可以寫出a,b滿足的條件,滿足條件的事件也可以寫出,畫(huà)出圖形,做出兩個(gè)事件對(duì)應(yīng)的圖形的面積,得到比值.
點(diǎn)評(píng):古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過(guò)長(zhǎng)度、面積、和體積、的比值得到.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案